	Question	Answer	Marks	AO	Guidance
5	(a)	$\mathbf{DR} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -2x + 32x^{-3} = 0$	M1	1 . 1a	Attempt to differentiate and equate to zero soi
		$x^4 = 16$			
		So $x = \pm 2$	A1	1.1b	Both <i>x</i> -values and no others.
		When $x = \pm 2$, $y = 7$	A1	1.1b	FT their <i>x</i> -coordinate(s) Do not FT $x = 0$
		[So the points are $(-2, 7)$ and $(2, 7)$	7)]		
			[3]		
5	(b)	$\frac{\mathbf{DR}}{\frac{d^2y}{dx^2}} = -2 - 96x^{-4}$	M1	2.1	Attempts to find the second derivative. FT their $\frac{dy}{dx}$
		When $x = 2$, $\frac{d^2 y}{dx^2} = -2 - \frac{96}{16} < 0$			Or convincing statement that $\frac{d^2 y}{dx^2} < 0$ for any $x \neq 0$ because x^{-4}
		When $x = -2$, $\frac{d^2 y}{dx^2} = -2 - \frac{96}{16} < 0$			is always positive
		So both points are maximum points	s E1	2.1	AG Complete argument required from correct second derivative and their $x \neq 0$. ISW if $-2 - \frac{96}{x^4}$ wrongly evaluated. Also allow for one point established and an argument from symmetry
		Alternative method $\frac{dy}{dx} > 0$ for $0 < x < 2$ and $\frac{dy}{dx} < 0$ for and $\frac{dy}{dx} > 0$ for $x < -2$ and $\frac{dy}{dx} < 0$ -2 < x < 0	$\begin{array}{c c} r \ x > 2 \\ for \end{array} \qquad M1$		Evaluating gradient for suitable values of <i>x</i> on either side of each turning point Also allow for <i>y</i> -coordinates in these ranges.
		So both points are maximum points	s E1		AG Complete argument required from correct first derivative and their $x \neq 0$. Also allow for one point established and an argument from symmetry
			[2]		