Question			Answer	Marks	AO	Guidance
11	(a)	(i)	Substitute $t = 10$, $h = 10$ and $t = 85$, $h = 200$ $10 = a + b \ln 10$ $200 = a + b \ln 85$ Solve simultaneous equations to give $b = \left[\frac{190}{\ln \frac{85}{10}} = \frac{190}{2.14}\right] = 88.8$	M1 E1	3.3 2.1	Forms two equations and attempt to solve simultaneously (BC) Allow if $10 = a + 2.303b$ and $200 = a + 4.443b$ used AG must be 3 s.f. If by simultaneous equations solved BC, 88.78or better must also be seen
				[2]		
11	(a)	(ii)	a = -194	B1	3.3	Accept awrt -194 or -195
				[1]		
11	(b)	(i)	For small values of <i>t</i> the model for <i>h</i> predicts a negative height [which is not possible]	E1	3.5b	argument based on negativity
				[1]		
11	(b)	(ii)	The model predicts that the sunflower would continue to increase in height for ever, which is not possible	E1	3.5b	argument based on contrast between ever increasing height <u>predicted by the model</u> and reality
				[1]		

11	(c)	height at $\frac{85}{2}$ days $a + 88.8 \ln \frac{85}{2}$ cm	M1	3.4	Also allow for 84.5 days used for 85
		[using given answers above] 139 cm which is more than 1 m	E 1	2.2a	Established using a value of <i>h</i> between 137.9 and 139 needed.
		Alternative method time to reach 1 m: $100 = a + 88.8 \ln t$	M1		Equate to 100 and solve for <i>t</i> . Condone $h = 1$ used
		[using given answers above] 27.4 days which is less than $\frac{85}{2}$	E1		Established using a value of <i>t</i> between 27 and 28 needed.
			[2]		
11	(d)	rate of growth $\frac{dh}{dt} = \frac{b}{t}$	M1	3.1b	Attempt to differentiate to give expression of the form $\frac{k}{t}$
		rate 3 cm per day when $\frac{b}{t} = 3$	M1	3.4	equates their derivative to 3
		$t = \frac{b}{3} = 29.6$	A1	1.1b	allow 29 or 30 days
			[3]		