	Question	Answer	Marks	AO	Guidance
14	(a)	$\log_{10} 200 - \log_{10} 20 = \log_{10} \frac{200}{20} = 1$	M1	1.1a	uses laws of logs
		$=\log_{10}10=1$	A1	1.1b	AG $\log \frac{200}{20}$ or $\log_{10} 10$ must be seen explicitly
		Alternative method $log_{10}20 = log_{10}2 + log_{10}10$ $log_{10}200 = log_{10}2 + log_{10}100$	M1		Uses laws of logs
		So $\log_{10} 200 - \log_{10} 20 = 2 - 1 = 1$	A1		Must see $\log_{10} 100 = 2$ or $\log_{10} 10 = 1$ explicitly
			[2]		
14	(b)	$\log_{10} 2000 - \log_{10} 200 = \log_{10} \frac{2000}{200} = 1$	M1	2.1	Attempts to establish a common difference of 1
		same as the difference for the first two terms, so an arithmetic sequence	A1	2.1	argues from a common difference eg "increases by 1 each time". Must use exact values to establish the difference between the second and third terms.
		Alternative method $\log_{10} 20 = \log_{10} 10 + \log_{10} 2 = 1 + \log_{10} 2$			
		$log_{10}200 = log_{10}100 + log_{10}2 = 2 + log_{10}2$ $log_{10}2000 = log_{10}1000 + log_{10}2 = 3 + log_{10}2$	M1		rewrites two more terms of the sequence and makes a comparison
		which is arithmetic with first term $\log_{10} 20$ and common difference of 1	A1		argues from a common difference eg "increases by 1 each time" Must use exact values to establish the difference between the second and third terms.
			[2]		
14	(c)	$S_{50} = 25(2a + (n-1)d)$ or $25(a+l)$	M1	1.1a	Uses the formula with first term $log_{10}20$ and common difference 1
		$S_{50} = 25(2(\log_{10}20) + 49 \times 1)$	A1	1.1b	Allow for fully correct expression not simplified. isw Correct forms include $50\log_{10}20 + 1225$, $25\log 400 + 1225$, $25(\log 400 + 49)$, $25(\log 4 + 51)$ etc
			[2]		