Question		Answer	Marks	AO	Guidance
13	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = p - 16x^{-3}$	M1	3.1a	Uses negative powers to attempt to find expression for $\frac{dy}{dx}$ A term in x^{-3} needed for this mark.
		$p-16x^{-3} = 0$ $p-16 \times 2^{-3} = 0$ p=2	M1 A1	1.1 1.1	Equates their derivative to zero and attempts to solve using $x = 2$
		When $x = 2$, $y = 7$ so $7 = 2p + \frac{8}{2^2} + q$	M1	3.1a	Uses the given coordinates to link p and q , or their p and q in the Cartesian equation
		So $2p+q=5$ so $q=1$	A1	1.1	FT their <i>p</i>
13	(b)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 48x^{-4} = \left[\frac{48}{x^4}\right]$	[5] B1	1.1	Allow even from wrong values of p and q
13	(c)	At $(2, 7)$ $\frac{d^2y}{dx^2} = 48 \times 2^{-4} = [3] > 0$	[1] M1	1.1	Substitutes $x = 2$ into their (b) Need not be fully evaluated Also allow for arguing the $48x^{-4}$ is always positive. Do not allow for gradient evaluated on either side of $(2, 7)$
		So the stationary point is a minimum	A1	2.2a	Clear statement using the positivity of the second derivative from correct working in (c). FT their second derivative (stating maximum if their value is negative)
			[2]		