Question		Answer	Marks	AO	Guidance
15		Circle is $(x+1)^2 + (y-7)^2 = 25$	M1	3.1a	Attempts to complete the square for either x or y terms Soi
		So C is the point $(-1, 7)$	A1	2.1	Correct coordinates of the centre seen or used. Condone incorrect or missing radius
		The intersection of the line and circle at	M1	3.1a	Attempt to solve the equations simultaneously
		$(7y-25)^2 + y^2 + 14y - 50 - 14y + 25 = 0$			$\left[x^{2} + \left(\frac{x+25}{7}\right)^{2} + 2x - 14\left(\frac{x+25}{7}\right) + 25 = 0\right] \text{ or oe}$
		Giving $50y^2 - 350y + 600 = 0$	M1	2.1	Simplifies equation leading to two roots. Allow arithmetic errors $[50x^2 + 50x - 600 = 0]$
		So $y = 3, 4$	A1	1.1	Could be solved by calculator [$x = -4, 3$]
		A and B are $(-4, 3)$ $(3, 4)$	A1	1.1	FT their y values
		Gradients of AC and BC are $\frac{4}{3}$ and $\frac{3}{-4}$	M1 A1	3.1a 2.1	Attempt to find gradient(s) of at least one of these lines Both correct gradients (not OA or OB)
		The product of the gradients is -1 so the lines are perpendicular			
		So the triangle is right-angled	A1	2.2a	Clear argument based on perpendicular lines www
		Alternative for last three marks Distance $AB^2 = (-4-3)^2 + (3-4)^2 = 50$	M1		Attempt to find the length of one of the sides of the triangle FT their coordinates
		$AC^2 = BC^2 = radius^2 = 25$	A1		All three correct lengths found
		So $AC^2 + BC^2 = 50 = AB^2$			
		So by Pythagoras the triangle is right-angled	A1		Clear argument based on Pythagoras' theorem or the cosine rule leading to a value for angle ACB www
			[9]		