| 10 | Zac is measuring the growth of a culture of bacteria in a laboratory. The initial area of the culture 8 cm ² . The area one day later is 8.8 cm ² . | | |----|---|-----| | | At first, Zac uses a model of the form $A = a + bt$, where $A \text{ cm}^2$ is the area t days after he begin measuring and a and b are constants. | ns | | | (a) Find the values of a and b that best model the initial area and the area one day later. | [2] | | | (b) Calculate the value of t for which the model predicts an area of 15 cm^2 . | [1] | | | (c) Zac notices the area covered by the culture increases by 10% each day. | | | | Explain why this model may not be suitable after the first day. | [1] | | | Zac decides to use a different model for A. His new model is $A = Pe^{kt}$, where P and k are constants. | | | | (d) Find the values of P and k that best model the initial area and the area one day later. | [3] | | | (e) Calculate the value of t for which the area reaches 15cm^2 according to this model. | [2] | | | (f) Explain why this model may not be suitable for large values of t . | [1] |