17	(i)	$\frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$	B1	3.1 a	may be seen later	
		$x^{2} - 8x + 9 = A(x - 2)^{2} + B(x + 1)(x - 2) + C(x + 1)$ A = 2 B = -1 C = -1	M1 A1 A1 A1 [5]	2.1 1.1 1.1 1.1	$\frac{2}{(x+1)} - \frac{1}{(x-2)} - \frac{1}{(x-2)^2}$	

Question		Answer	Marks	AOs	Guidance	
17	(ii)	$\int \frac{dy}{y} = \int \frac{x^2 - 8x + 9}{(x+1)(x-2)^2} dx \text{ soi}$	M1*	3.1 a	allow omission of integral signs and/or omission of dy and/or dx	
		use of their partial fractions in integration	M1*	2.1	allow one sign error and/or one coefficient error	condone use of brackets
		$\ln y = 2\ln x+1 - \ln x-2 + \frac{1}{x-2} + c$	A1	1.1	A1 for any correct natural log integral on RHS FT <i>their</i> $\frac{2}{x+1}$ or <i>their</i>	instead of modulus signs; these two A marks are only
			A1	1.1	$\frac{-1}{x-2}$ A1 for $\frac{1}{x-2}$ FT their $\frac{k}{(x-2)^2}$	available following the award of both M marks
		substitution of $y = 16$ and $x = 3$	M1dep*	1.1	expression must include $+ c$ and must include at least one natural log term; may be awarded after exponentiating	may be awarded following collection of like terms, which may contain errors NB $c = -1$
		correctly exponentiate both sides of their equation	M1	1.1		
		$y = \frac{(x+1)^2}{x-2} e^{\frac{3-x}{x-2}}$ oe	A1	2.1	eg $\frac{(x+1)^2}{x-2} e^{\frac{1}{x-2}} e^{-1}$	
			[7]	2.1		