9	(a)	$(2x+3-1)^2$ or $(2x+3)^2 - 2(2x+3) + 1$ seen	M1	1.1	substitution	
		simplified to eg $4(x + 1)^2$ or $4x^2 + 8x + 4$ or $(2x + 2)^2$	A1	1.1	mark the final answer	ignore superfluous work on eg finding roots
		domain is $-1 < x < 0$	B1	1.1	from $2x + 3 > 1$	
			[3]			
9	(b)	$0 < \mathrm{gf}(x) < 4$	B1	1.1		
			[1]			

Question		Answer	Marks	AOs		Guidance
9	(c)	factorise their $gf(x)$ to obtain perfect square or complete the square	M1	3.1 a	allow eg $2(x + 1)(2x + 2)$; may follow slip eg dividing by 4	or $g^{-1}(x) = \sqrt{x} + 1$ or $f^{-1}(x) = \frac{1}{2}(x-3)$ for M1
		$y = 4(x+1)^2$ or $(2x+2)^2$ oe	A1	2.1	FT	A1 for both correct
		$(x+1) = (\pm)\sqrt{\frac{y}{4}}$ oe	M1	1.1		M1 for their f^{-1} (their $\sqrt{x} + 1$)
		$[(gf)^{-1}(x) =] \sqrt{\frac{x}{4}} - 1 \text{ or } \frac{\sqrt{x}}{2} - 1 \text{ oe}$	A1	1.1		A1 for $(gf)^{-1}(x) = \sqrt{\frac{x}{4}} - 1$
		domain is $0 < x < 4$	B1 [5]	1.1	FT their (b)	or $\frac{\sqrt{x}}{2} - 1$ oe x and y may be interchanged for the first 3 marks but not for the final A1