9	(a)		$(2 x+3-1)^{2}$ or $(2 x+3)^{2}-2(2 x+3)+1$ seen simplified to eg $4(x+1)^{2}$ or $4 x^{2}+8 x+4$	1.1	substitution	
A1	$\mathbf{1 . 1}$	mark the final answer	ignore superfluous work on eg finding roots			
			or $(2 x+2)^{2}$ domain is $-1<x<0$	B1	$\mathbf{1 . 1}$	from $2 x+3>1$
[3]						
9	(b)	$0<\operatorname{gf}(x)<4$	B1	$\mathbf{1 . 1}$		

	uest	Answer	Marks	AOs		Guidance
9	(c)	factorise their $\operatorname{gf}(x)$ to obtain perfect square or complete the square $y=4(x+1)^{2}$ or $(2 x+2)^{2}$ oe $(x+1)=(\pm) \sqrt{\frac{y}{4}}$ oe $\left[(g f)^{-1}(x)=\right] \sqrt{\frac{x}{4}}-1$ or $\frac{\sqrt{x}}{2}-1$ oe domain is $0<x<4$	M1 A1 M1 A1 B1 [5]	3.1a 2.1 1.1 1.1 1.1	allow eg $2(x+1)(2 x+2)$; may follow slip eg dividing by 4 FT FT their (b)	or $\mathrm{g}^{-1}(x)=\sqrt{x}+1$ or $\mathrm{f}^{-1}(x)=1 / 2(x-3)$ for M1 A1 for both correct M1 for their f^{-1} (their $\sqrt{x}+1$) A1 for $(g f)^{-1}(x)=\sqrt{\frac{x}{4}}-1$ or $\frac{\sqrt{x}}{2}-1$ oe x and y may be interchanged for the first 3 marks but not for the final A1

