In this question you must show detailed reasoning.

-:-- 2

The equation of a curve is

$$y = \frac{\sin 2x - x}{x \sin x}.$$

(a) Use the small angle approximation given in the list of formulae on pages 2–3 of this question paper to show that

0.05

$$\int_{0.05}^{0.05} y \, \mathrm{d}x \approx \ln 5. \tag{4}$$

(b) Use the same small angle approximation to show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} \approx -10000 \text{ at the point where } x = 0.01.$$

The equation y = 0 has a root near x = 1. Joan uses the Newton-Raphson method to find this root. The output from the spreadsheet she uses is shown in Fig. 10.1.

n	0	1	2	3	4	5	6	7
X_n	1	0.958509	0.950084	0.948261	0.94786	0.947772	0.947753	0.947748

Fig. 10.1

Joan carries out some analysis of this output. The results are shown in Fig. 10.2.

x	\mathcal{Y}
0.9477475	-7.79967E-07
0.9477485	-2.90821E-06
x	у
0.947745	4.54066E-06
0.947755	-1.67417E-05

Fig. 10.2

- (c) Consider the information in Fig. 10.1 and Fig. 10.2.
 - Write 4.54066E–06 in standard mathematical notation.
 - State the value of the root as accurately as you can, justifying your answer.

[3]