	Question	Answer	Marks	AO	Guidance
16		$\int \frac{\mathrm{d}y}{y} = \int \frac{9\mathrm{d}x}{(x-1)(x+2)} \mathbf{oe}$	M1	3.1a	separation of variables; condone omission of integral signs or of dx and/or dy; allow 1 slip such as omission of 9 or sign error in bracket
		$\frac{A}{x-1} + \frac{B}{x+2}$	M1	3.1a	allow 1 sign error in bracket
		$\frac{9}{(x-1)(x+2)} = \frac{3}{(x-1)} - \frac{3}{(x+2)}$ oe	A1	1.1	one of two terms correct
			A1	1.1	all correct
		$\ln y = A \ln(x-1) + B \ln(x+2) + c$	M1*	2.1	any ln integral correct; FT their A and B ; condone omission of $+c$
		$\ln y = 3\ln(x-1) - 3\ln(x+2) + c$ oe	A1	1.1	all three terms correct including $+ c$;
					may see $\frac{1}{9} \ln y = \frac{1}{3} \ln(x-1) - \frac{1}{3} \ln(x+2) + c$
					NB $\ln y + c$ is equivalent to $\ln Ay$ where A is a constant
		$\ln 16 = 3\ln(2-1) - 3\ln(2+2) + c$	M1dep*	2.1	substitution of $(2, 16)$ in their expression; may be implied by $eg \ln 16 = 3\ln 1 - 3\ln 4 + c$; must see substitution for incorrect expressions
		$c = 5\ln 4 \text{ or } \ln 4^5 \text{ or } \ln 1024$	A1	1.1	may see $c = \frac{5}{9} \ln 4$ oe allow exact equivalents only
		$ \ln \frac{\text{their}_{1024(x-1)^A}}{(x+2)^B} \mathbf{oe} $	M1	3.1a	correctly combines their RHS into a single logarithm; their $+c$ must be correctly incorporated into their $\ln f(y)$ or their $\ln f(x)$
		$\ln y = \ln \frac{1024(x-1)^3}{(x+2)^3}$	A1	1.1	all correct

Question	Answer	Marks	AO	Guidance
	$e^{\ln y} = e^{\ln \frac{A(x-1)^3}{(x+2)^3}} \mathbf{oe}$	M1	2.1	correctly exponentiates their expressions, may be awarded before combination into single logarithm
	$y = \frac{1024(x-1)^3}{(x+2)^3}$	A1	3.2a	all correct; must see " $y =$ " at some stage
ĺ		12		
	Alternatively, for the last 6 marks $\ln \left\{ \frac{(x-1)^A}{(x+2)^B} \times e^c \right\} \mathbf{oe}$	M1dep*		correctly combines their RHS into a single logarithm;
	$\ln y = \ln \left[\frac{(x-1)^3}{(x+2)^3} \times e^c \right] $ oe	A1		all correct
	$\ln y = \ln \left[\frac{(x-1)^3}{(x+2)^3} \times e^c \right] $ oe $e^{\ln y} = e^{\ln \frac{(x-1)^A}{(x+2)^B} \times D} $ oe $y = \frac{(x-1)^3}{(x+2)^3} \times D$ $16 = \frac{(2-1)^A}{(2+2)^B} \times D $ oe	M1		correctly exponentiates their expressions; may be awarded before combining into single logarithm
	$y = \frac{(x-1)^3}{(x+2)^3} \times D$	A1		all correct
	$16 = \frac{(2-1)^A}{(2+2)^B} \times D \text{ oe}$	M1		substitution of (2, 16) in their expression; may be implied by eg $16 = \frac{1^3}{4^3} \times D$; must see substitution for incorrect expressions; may be awarded before exponentiating
	$y = \frac{1024(x-1)^3}{(x+2)^3}$	A1		all correct; must see "y =" at some stage