13	(i)	calculation of $P(X < 14)$ and $P(X > 18)$	M1	3.4	or solves $-1.476 = \frac{14 - \mu}{\sigma}$ and $0.496 = \frac{18 - \mu}{\sigma}$ simultaneously	or solves $-1.476 = \frac{x - 15}{2}$ and $0.496 = \frac{x - 15}{2}$
		0.3085 and 0.0668 to 1 sf or better these figures do not support the model	A1 A1	1.1 3.5a	$\mu \approx 17$ and $\sigma \approx 2.02$ 17 is (relatively) far from 15 so not a	x = 12.048 and 15.992 to nearest whole number or better which are not close to 14 and
			[3]		good fit the second A1 is only available if the first A1 is awarded	18
					allow SC2 for showing the model is not a good fit for either value with all working correct	or $\frac{14-15}{2}$ and $\frac{18-15}{2}$ evaluated
					or	-0.5 and 1.5 obtained
					for a complete argument based on symmetry which refers to both tails	which are not close to -1.476 and 0.496 respectively

Question		Answer	Marks	AOs	Guidance	
13	(ii)	$\Phi^{-1}(0.07) = -1.476 = \frac{14-\mu}{2}$ [$\mu = 16.95$] OR $\Phi^{-1}(0.69) = 0.496 = \frac{18-\mu}{2}$ [$\mu = 17.008$] [$\mu = 17$]	M1	3.5c	<i>alternatively</i> since the variance is assumed to be correct, the mean must be as far above the midpoint as it was previously below it.	if M0 allow B2 for 17 unsupported
			A1 [2]	2.4	16 + 1 = 17	
13	(iii)	$z = \pm 1.96$ used	B1	1.1a		NB 1.959963985rounded
		$\frac{\frac{16 - \mu}{2}}{\sqrt{n}} < -1.96 \text{ or } \frac{\mu - 16}{\frac{2}{\sqrt{n}}} > 1.96$ $\sqrt{n} \text{ isolated from their } \frac{16 - \mu}{\frac{\sigma}{\sqrt{n}}} < -1.96 \text{ oe}$ $[n >] 15.3664 - 15.4$ $n = 16 \text{ cao}$	M1	3.1b	allow method marks only if other z – value, eg – 1.645 used; FT μ	to 3 or more sf M0 if other value for σ used all marks are available if works with = instead of < or > throughout, but withhold final A1 if works with < instead of > or > instead of < those sets the set of t
			M1	2.1	$eg\sqrt{n} > 2 \times 1.96$	
			A1 A1	3.4 2.2b	previous A1 must be awarded for the	
			[5]	2.20	award of final A1	