12 Fig. 12.1 shows an excerpt from the pre-release material.

	Α	В	С	D	E	F	G	Н
1	Sex	Age	Marital	Weight	Height	вмі	Waist	Pulse
2	Female	34	Married	60.3	173.4	20.05	82.5	74
3	Female	85	Widowed	64.7	161.2	24.9	#N/A	#N/A
4	Female	48	Divorced	100.6	171.4	34.24	105.6	92
5	Male	61	Married	70.9	169.5	24.68	92.2	70
6	Male	68	Divorced	96.8	181.6	29.35	112.9	68

Fig. 12.1

There was no data available for cell H3.

(a) Explain why #N/A is used when no data is available.

Fig. 12.2 shows a scatter diagram of pulse rate against BMI (Body Mass Index) for females. All the available data was used.

[1]

[1]

[1]

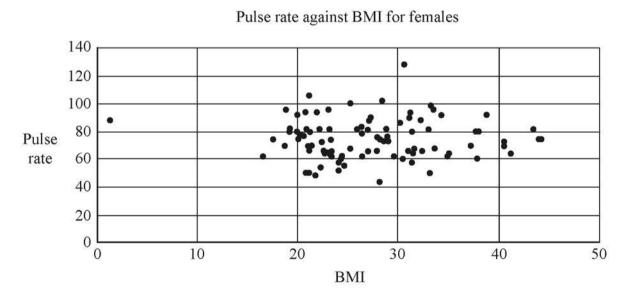


Fig. 12.2

There are **two** outliers on the diagram.

- (b) On the copy of Fig. 12.2 in the Printed Answer Booklet, ring these outliers.
- (c) Use your knowledge of the pre-release material to explain whether either of these outliers should be removed. [2]
- (d) State whether the diagram suggests there is any correlation between pulse rate and BMI.

for	females was found to be 0.912. All the available data was used.	
(e)	Explain why a model of the form $w = mb + c$ for the relationship between waist mean and BMI is likely to be appropriate.	surement

The product moment correlation coefficient between waist measurement, w, in cm and BMI, b,

The LINEST function on a spreadsheet gives m = 2.16 and c = 33.0.

The LINEST function on a spreadsheet gives m = 2.16 and c = 33.0.

(f) Calculate an estimate of the value for cell G3 in Fig. 12.1.