Question		on	Answer	Marks	AO	Guidance
11	(a)		Nina's, because hers is the largest sample size oe	B1	2.2a	allow eg Nina's, because with a larger sample size the probabilities get closer to the true probabilities oe
				[1]		
11	(b)		11p + kp = 1	M1	3.1a	
			$p = \frac{1}{11+k}$	A1	1.1	
				[2]		
11	(c)		their $\frac{1}{11+k} \times k$ or their $\frac{1}{11+k} \times 120$	M1	2.1	multiply by k or by 120; may be embedded
			$120 \times their \frac{k}{11+k}$	M1	1.2	multiplying by both k and 120
			$\frac{120k}{11+k}$ oe	A1	1.1	
				[3]		
11	(d)		$32 = \text{their}\frac{120k}{11+k}\mathbf{oe}$	M1	1.1	
			<i>k</i> = 4	A1	1.1	
				[2]		

Question		on	Answer	Marks	AO	Guidance
			Alternatively $11p = 1 - \frac{32}{120}$ may be implied by $p = \frac{1}{15}$ (from $(P(X \neq 12))$	M1		or $\frac{kf}{120} = \frac{32}{120}$ (from $11f = 120 - 32 = 88$ so $f = 8$ and so $kp = \cdots$)
			k = 4	A1		<i>k</i> = 4
11	(e)		$Y \sim B\left(30, their \frac{4}{11+4}\right) \text{ or } Y \sim B\left(30, \frac{32}{120}\right) \text{ used}$ to find P(Y = 8)	M1	3.1 a	<i>Y</i> is the number of 12s obtained in 30 rolls;
			0.16 – 0.163 BC	A1	1.1	allow B2 for $0.1628 - 0.163$ unsupported
				[2]		