A student is trying to find the binomial expansion of $\sqrt{1-x^3}$.

She gets the first three terms as $1 - \frac{x^3}{2} + \frac{x^6}{8}$.

She draws the graphs of the curves $y = \sqrt{1 - x^3}$, $y = 1 - \frac{x^3}{2}$ and $y = 1 - \frac{x^3}{2} + \frac{x^6}{8}$ using software.

(a) Explain why
$$1 - \frac{x^3}{2} + \frac{x^6}{8} \ge 1 - \frac{x^3}{2}$$
 for all values of x . [1]

(b) Explain why the graphs suggest that the student has made a mistake in the binomial expansion.

[1]

(c) Find the first four terms in the binomial expansion of
$$\sqrt{1-x^3}$$
. [3]

(d) State the set of values of x for which the binomial expansion in part (c) is valid. [1]

(e) Sketch the curve
$$y = 2.5\sqrt{1-x^3}$$
 on the grid in the Printed Answer Booklet. [2]

(f) In this question you must show detailed reasoning.

The end of a bus shelter is modelled by the area between the curve $y = 2.5\sqrt{1-x^3}$, the lines x = -0.75, x = 0.75 and the x-axis. Lengths are in metres.

Calculate, using your answer to part (c), an approximation for the area of the end of the bus shelter as given by this model. [4]