Question		Answer	Marks	AO	Guidance
3		$\frac{\mathbf{DR}}{\frac{\sqrt{6}-\sqrt{5}}{6-5}} + \frac{\sqrt{7}-\sqrt{6}}{7-6} \text{oe}$	M1	3. 1a	Rationalising denominators. This is the minimum working needed for M1 Accept 1 for " $6-5$ " and -1 for " $5-6$ " etc
		$\sqrt{7} - \sqrt{5}$ or $\frac{\sqrt{5} - \sqrt{7}}{-1}$	A1	1.1	
		$\frac{k}{\sqrt{5} + \sqrt{7}} = \frac{k(\sqrt{7} - \sqrt{5})}{7 - 5} = \sqrt{7} - \sqrt{5}$ so $k = 2$	4.1	2.2a	
		so $k = 2$	A1		Finding k convincingly after M1
		Alternative $\left(\sqrt{6} + \sqrt{7}\right)\left(\sqrt{5} + \sqrt{7}\right) + \left(\sqrt{5} + \sqrt{6}\right)\left(\sqrt{5} + \sqrt{7}\right)$ $= k\left(\sqrt{5} + \sqrt{6}\right)\left(\sqrt{6} + \sqrt{7}\right)$	M1		For dealing appropriately with fractions (working with both sides) e.g. clearing the fractions or making <i>k</i> the subject with the RHS as a single fraction. $k = \frac{\left(\sqrt{5} + \sqrt{7} + 2\sqrt{6}\right)\left(\sqrt{5} + \sqrt{7}\right)}{\left(\sqrt{5} + \sqrt{6}\right)\left(\sqrt{6} + \sqrt{7}\right)}$
		$ \left(2\sqrt{5}\sqrt{6} + 2\sqrt{5}\sqrt{7} + 2\sqrt{6}\sqrt{7} + 12 \right) $ = $k \left(\sqrt{5}\sqrt{6} + \sqrt{5}\sqrt{7} + \sqrt{6}\sqrt{7} + 6 \right) $	A1		Expanding brackets and collecting like surds $k = \frac{12 + 2\sqrt{5}\sqrt{7} + 2\sqrt{5}\sqrt{6} + 2\sqrt{6}\sqrt{7}}{6 + \sqrt{5}\sqrt{7} + \sqrt{5}\sqrt{6} + \sqrt{6}\sqrt{7}}$
		$2\left(\sqrt{5}\sqrt{6}+\sqrt{5}\sqrt{7}+\sqrt{6}\sqrt{7}+6\right)$			
		$=k\left(\sqrt{5}\sqrt{6}+\sqrt{5}\sqrt{7}+\sqrt{6}\sqrt{7}+6\right)$			
		so $k = 2$	A1		Finding k convincingly after M1
			[3]		