Question		Answer	Marks	AO	Guidance	
7		[Perimeter =] $2r + r\theta = 10$	M1	1.1		
		$\theta = \frac{10 - 2r}{r}$	B1	3.1a	$OR r = \frac{10}{2+\theta}$	Expression for one of r , θ in terms of the other
		$A = \frac{1}{2}r^2\theta$ so $A = \frac{r(10-2r)}{2} = 5r - r^2$	M1	3.1a	OR $A = \frac{100\theta}{2(2+\theta)^2} = \frac{50\theta}{(2+\theta)^2}$	Area in terms of either <i>their</i> r or <i>their</i> θ . Need not expand brackets.
		$A = 2.5^2 - \left(2.5 - r\right)^2$	M1	3.1a	Completing the square	
		This has a max when $2.5 - r = 0$	B1	2.4	Convincing explanation that there is a	a max
		$Max = 6.25 \text{ [cm}^2\text{]}$	A1	2.2a		
		Alternative method 1				
		$\frac{\mathrm{d}A}{\mathrm{d}r} = 5 - 2r$	M1			
		$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = -2 \text{ so max}$	B1			
		$\frac{\mathrm{d}A}{\mathrm{d}r} = 0 \Rightarrow r = 2.5; \mathrm{Max} = 6.25 \mathrm{[cm^2]}$	A1			
		Alternative method 2 $\frac{dA}{d\theta} = \frac{50(2+\theta)^{2} - 100\theta(2+\theta)}{(2+\theta)^{4}} = \frac{100 - 50\theta}{(2+\theta)^{3}}$	M1		Reasonable attempt at quotient rule	
		$\frac{\mathrm{d}A}{\mathrm{d}\theta} = 0 \Rightarrow \theta = 2 \; ; A = 6.25 \; [\mathrm{cm}^2]$	A1		For information	
		$\theta = 1.5 \Rightarrow \frac{dA}{d\theta} > 0$, $\theta = 2.5 \Rightarrow \frac{dA}{d\theta} < 0$ so max	B1		$\frac{d^2 A}{d\theta^2} = -\frac{200}{256} = -0.78125 \text{ at } \theta = 2$	
			[6]			