	Question	Answer	Marks	AO	Guidance
6		\mathbf{DR} $\tan^2 x - 3 = 2\tan x$	M1^	3.1a	Multiplying through by tan x
		$\tan^2 x - 2\tan x - 3 = 0$	M1^	1.1	Get all 3 terms of quadratic on one side and zero on the other
		$(\tan x - 3)(\tan x + 1) = 0$ $\tan x = 3$, $\tan x = -1$	M1*	1.1	Solve 3 term quadratic to get both values of tan <i>x</i> Must see either use of the formula, factorisation or completing the square. Allow 1 error in method Condone missing '= 0'
		71.6°, 251.6°, 135°, 315°	A1^ A1*	1.1 1.1	A1 [^] for any two roots correct (dep. on M2 [^]) A1* for all roots with no additional solutions (dep. on M1*) Accept 72 and 252
		Alternative solution			
		$\frac{\sin x}{\cos x} - 3 \frac{\cos x}{\sin x} = 2$	M1^	3.1a	Use of $\tan x = \frac{\sin x}{\cos x}$
		$\sin^2 x - 2\sin x \cos x - 3\cos^2 x = 0$	M1^	1.1	Get all 3 terms on one side and zero on the other
		$(\sin x - 3\cos x)(\sin x + \cos x) = 0$ $\tan x = 3, \tan x = -1$	M1*	1.1	Factorise to get both values of tan <i>x</i> Must see factorisation. Allow 1 error in method Condone missing =0
		71.6°, 251.6°, 135°, 315°	A1^ A1*	1.1 1.1	A1 [^] for any two roots correct (dep. on M2 [^]) A1* for all roots with no additional solutions (dep. on M1*) Accept 72 and 252
			[5]		

O6. This is another DR question. There are 2 solutions provided. The first method involves multiplying through by tan x (M1) and the second method involves replacing tan x with sin x/cos x and cot x with cos x/sin x (M1). Both methods then involve getting an equation with 3 terms on one side and zero on the other (M1) and solving their 3-term equation AND get both values of tan x (M1). A correctly solved equation implies any missing M marks. They **must** solve the equation by a valid method (factorisation, formula or completing the square) to get the M1

here.