
9 This question is about the equation f(x) = 0, where $f(x) = x^4 - x - \frac{1}{3x-2}$.

Fig. 9.1 shows the curve y = f(x).

- (a) Show, by calculation, that the equation f(x) = 0 has a root between x = 1 and x = 2. [2]
- (b) Fig. 9.2 shows part of a spreadsheet being used to find a root of the equation.

Fig. 9.2

	А	В
1	х	f(x)
2	1.5	3.1625
3	1.25	0.619977679
4	1.125	-0.250466087
5		

Write down a suitable number to use as the next value of x in the spreadsheet. [1]

(c) Determine a root of the equation f(x) = 0. Give your answer correct to 1 decimal place. [1]

(d) Fig. 9.3 shows a similar spreadsheet being used to search for another root of f(x) = 0.

Fig. 9.3

	А	В	
1	Х	f(x)	
2	0	0.5	
3	1	-1	
4	0.5	1.5625	
5	0.75	-4.4336	
6	0.6	4.5296	
7	0.7	-10.4599	
8	0.65	19.5285	
9	0.675	-40.4674	
10	0.6625	79.5301	
11	0.66875	-160.4687	
10			

- (i) Explain why it looks from rows 2 and 3 of the spreadsheet as if there is a root between 0 and 1. [1]
- (ii) Explain why this process will **not** find a root between 0 and 1.