Summary of key points

6 A single fraction with two distinct linear factors in the denominator can be split into two separate fractions with linear denominators. This is called splitting it into partial fractions:

$$
\frac{5}{(x+1)(x-4)}=\frac{A}{x+1}+\frac{B}{x-4}
$$

7 The method of partial fractions can also be used when there are more than two distinct linear factors in the denominator:
$\frac{7}{(x-2)(x+6)(x+3)}=\frac{A}{x-2}+\frac{B}{x+6}+\frac{C}{x+3}$
8 A single fraction with a repeated linear factor in the denominator can be split into two or more separate fractions:
$\frac{2 x+9}{(x-5)(x+3)^{2}}=\frac{A}{x-5}+\frac{B}{x+3}+\frac{C}{(x+3)^{2}}$
9 An improper algebraic fraction is one whose numerator has a degree equal to or larger than the denominator. An improper fraction must be converted to a mixed fraction before you can express it in partial fractions.

10 You can either use:

- algebraic division
- or the relationship $\mathrm{F}(x)=\mathrm{Q}(x) \times$ divisor + remainder
to convert an improper fraction into a mixed fraction.

Partial fractions

Many algebraic fractions can be written as the sum of simpler fractions. This technique is called writing a fraction in partial fractions. In your A-level exam you might have to use partial fractions with the binomial expansion or when integrating. You can revise these topics on pages 75 and 105.

Worked example

$\mathrm{f}(x)=\frac{7-2 x}{(2 x-1)(x+1)}$
Express $\mathrm{f}(x)$ in partial fractions.
(3 marks)
$\frac{7-2 x}{(2 x-1)(x+1)}=\frac{A}{2 x-1}+\frac{B}{x+1}$

$$
7-2 x=A(x+1)+B(2 x-1)
$$

Let $x=\frac{1}{2}: \quad 7-2\left(\frac{1}{2}\right)=A\left(\frac{1}{2}+1\right)$

$$
A=4
$$

Let $x=-1: \quad 7-2(-1)=B(2(-1)-1)$

Golden rule

Find as many missing values as possible by substituting values for x to make some of the factors equal to zero. The more factors you can find this way, the easier it will be to equate coefficients later.

The denominators on the right-hand side are factors of the original denominator. If all the factors are different, then each one appears as a denominator once.
$f(x)=\frac{4}{2 x-1}-\frac{3}{x+1}$

Cover up and calculate

If the expression has no repeated factors, you can use this quick method to find numerators. Choose a factor, and work out the value of x which makes that factor equal to zero. Then cover it up with your finger, and evaluate what's

Covering up $(x+1)$ in the Worked example above and evaluating what's left with $x=-1$ gives you B.
left of the fraction with that value of x.
$f(x)=\frac{7-2 x^{\frac{7-2(-1)}{2(-1)-1}}=\frac{9}{-3}=-3}{(2 x-1)}$

You need to do a bit more work if there is a repeated factor, like $(x-3)^{2}$, or if the fraction is improper. You should always work out any values you can by substituting first. Here you can work out one value by substituting $x=3$. To work out the other values you need to equate coefficients. You could multiply out both sides first:
$2 x^{2}-1=A x^{2}+(-6 A+B) x+(9 A-3 B+C)$
You will need to use problem-solving skills throughout your exam - be prepared!

Worked example

$\frac{2 x^{2}-1}{(x-3)^{2}}=A+\frac{B}{(x-3)}+\frac{C}{(x-3)^{2}}, x \neq 3$
Find the values of A, B and C. (4 marks)
$2 x^{2}-1=A(x-3)^{2}+B(x-3)+C$
Let $x=3$:
$2(3)^{2}-1=C$

$$
C=17
$$

Equate x^{2} terms:

$$
A=2
$$

Equate constant terms: $-1=9 A-3 B+C$

$$
\begin{aligned}
-1 & =18-3 B+17 \\
-36 & =-3 B \\
B & =12
\end{aligned}
$$

Now try this

$1 \mathrm{~g}(x)=\frac{8 x^{2}}{(3 x-2)(x+2)^{2}}$
Express $\mathrm{g}(x)$ in partial fractions.
There is a repeated factor, so you need one fraction with denominator $(x+2)$ and another fraction with denominator $(x+2)^{2}$.

> (4 marks) \quad Find the values of A, B and $C . \quad$ (4 marks) Answer
$2 \frac{6 x^{2}-1}{(2 x-3)(x+1)}=A+\frac{B}{2 x-3}+\frac{C}{x+1}$

You mightnieed to find missing coefficients when a cubic or quartic expression is divided by a quadratic expression. You can use long division, but make sure you set your work out neatly. Here is the working for $\frac{3 x^{4}-6 x^{3}+x-2}{x^{2}-1}$:

The x coefficient is 0 ,
You need to multiply $\left(x^{2}-1\right)$ by $3 x^{2}$ to get the term $3 x^{4}$
so write $+\mathrm{OX}_{\mathrm{x}}$ so the first term in your answer is $3 x^{2}$ so write $+0 x$

$$
x^{2}+0 x-1
$$

$$
\begin{array}{ll}
\frac{3 x^{2}-6 x+3}{3 x^{4}-6 x^{3}+0 x^{2}+x-2} & \text { The } x^{2} \text { coefficient is } 0 \\
& \text { so write }+0 x^{2}
\end{array}
$$

$$
\frac{3 x^{4}+0 x^{3}-3 x^{2}}{-6 x^{3}+3 x^{2}+x-2} 3 x^{2} x\left(x^{2}+0 x-1\right)=3 x^{4}+0 x^{3}-3 x^{2}
$$

Always line up terms with

$$
-6 x^{3}+0 x^{2}-6 x
$$

the same power of x.

$$
\begin{aligned}
& 3 x^{2}-5 x-2 \\
& 3 x^{2}+0 x-3
\end{aligned} \text { Be careful with negative }
$$

$$
\text { If you are dividing by a quadratic, }--5 x+1 \quad-2-(-3)=1
$$ the remainder will be a linear term.

So $\frac{3 x^{4}-6 x^{3}+x-2}{x^{2}-1}=\left(3 x^{2}-6 x+3\right)+\frac{1-5 x}{x^{2}-1}$

Worked example

Given that

$\frac{3 x^{4}-2 x^{3}-5 x^{2}-4}{x^{2}-4} \equiv a x^{2}+b x+c+\frac{d x+e}{x^{2}-4}, \quad x \neq \pm 2$
find the values of the constants a, b, c, d and e.
(4 marks)

$$
\begin{aligned}
3 x^{4}-2 x^{3}-5 x^{2}-4 & \equiv\left(a x^{2}+b x+c\right)\left(x^{2}-4\right)+d x+e \\
& \equiv a x^{4}+b x^{3}+c x^{2}-4 a x^{2}-4 b x-4 c+d x+e \\
& \equiv a x^{4}+b x^{3}+(c-4 a) x^{2}+(d-4 b) x+(e-4 c)
\end{aligned}
$$

$$
\begin{aligned}
& x^{4} \text { terms } \rightarrow a=3 \\
& x^{3} \text { terms } \rightarrow b=-2 \\
& x^{2} \text { terms } \rightarrow c-4 a=-5 \\
& c-12=-5 \\
& c=7
\end{aligned}
$$

$$
x \text { terms } \rightarrow d-4 b=0
$$

$$
d+8=0
$$

$$
d=-8
$$

$$
\text { Constant terms } \rightarrow e-4 c=-4
$$

$$
e-28=-4
$$

$$
e=24
$$

You can also compare coefficients to find the missing coefficients. Follow these steps:

1. Multiply both sides by the divisor.
2. Expand the brackets carefully then collect like terms.
3. Compare coefficients on both sides, starting with the highest power of x.

As long as you write down what each constant is equal to, you don't need to write out the whole expression at the end.

Now try this

Given that

$\frac{2 x^{4}+4 x^{2}-x+2}{x^{2}-1} \equiv a x^{2}+b x+c+\frac{d x+e}{x^{2}-1}, \quad x \neq \pm 1$ find the values of the constants a, b, c, d and e.

Answer (4 marks)

Whichever method you use. make sure you either:

- write out the expression in full with the constants in place. or
- write $a=\ldots, b=\ldots$, etc.

