## **Summary of key points**

- 1 You can represent complex numbers on an **Argand diagram**. The x-axis on an Argand diagram is called the **real axis** and the *y*-axis is called the **imaginary axis**. The complex number z = x + iy is represented on the diagram by the point P(x, y), where x and y are
- Cartesian coordinates. Im ♠ The argument  $\theta$  of any complex number is usually given in the range  $-\pi < \theta \le \pi$ . This is sometimes referred to as the principal argument. **2** The complex number z = x + iy can be represented as the vector  $\binom{x}{y}$  on an Argand diagram.
- The **modulus** of a complex number, |z|, is the distance from the origin to that number on an
- Argand diagram. For a complex number z = x + iy, the modulus is given by  $|z| = \sqrt{x^2 + y^2}$ .
- 4 The **argument** of a complex number, arg z, is the angle between the positive real axis and the line joining that number to the origin on an Argand diagram. For a complex number z = x + iy, the argument,  $\theta$ , satisfies  $\tan \theta = \frac{y}{x}$
- **5** Let  $\alpha$  be the positive acute angle made with the real axis  $arg z = \pi - \alpha$  $arg z = \alpha$
- - by the line joining the origin and z.
- If z lies in the first quadrant then  $\arg z = \alpha$ . If z lies in the second quadrant then  $\arg z = \pi - \alpha$ .  $\alpha$  $\alpha$ Re If z lies in the third quadrant then  $\arg z = -(\pi - \alpha)$ . • If z lies in the fourth quadrant then  $\arg z = -\alpha$ .  $arg z = -(\pi - \alpha)$  $arg z = -\alpha$
- $z = r(\cos\theta + i\sin\theta)$ Im A From the right-angled triangle,  $x = r \cos \theta$  and  $y = r \sin \theta$ . z = x + iy $z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta)$

**6** For a complex number z with |z| = r and  $\arg z = \theta$ , the modulus–argument form of z is



Im A

Sketch the Argand diagram, showing the position

Links

Use  $cos(-\theta) = cos\theta$  and  $sin(-\theta) = -sin \theta$ 

Every point *z*, on the circumference of the circle,

is a distance of r from the centre of the circle.

 $z_2$  is now in modulus-argument form.

Locus of points.



Multiplying these numbers together, you get

- $\bullet \quad \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$  $z_1 z_2 = r_1 (\cos \theta_1 + i \sin \theta_1) \times r_2 (\cos \theta_2 + i \sin \theta_2)$  $= r_1 r_2 (\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2)$ 
  - $\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 \arg z_2$
- $= r_1 r_2 (\cos \theta_1 \cos \theta_2 + i \cos \theta_1 \sin \theta_2 + i \sin \theta_1 \cos \theta_2 + i^2 \sin \theta_1 \sin \theta_2)$ addition formulae:  $= r_1 r_2 (\cos \theta_1 \cos \theta_2 + i \cos \theta_1 \sin \theta_2 + i \sin \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2)$  $sin(A \pm B) \equiv sin A cos B \pm cos A sin B$  $cos(A \pm B) \equiv cosAcosB \mp sinAsinB$  $= r_1 r_2 ((\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2))$
- $= r_1 r_2 (\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$ Dividing  $z_1$  by  $z_2$  you get  $\frac{z_1}{z_2} = \frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)}$

 $= \frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} \times \frac{(\cos\theta_2 - i\sin\theta_2)}{(\cos\theta_2 - i\sin\theta_2)}$ 

- $= \frac{r_1(\cos\theta_1\cos\theta_2 i\cos\theta_1\sin\theta_2 + i\sin\theta_1\cos\theta_2 i^2\sin\theta_1\sin\theta_2)}{r_2(\cos\theta_2\cos\theta_2 i\cos\theta_2\sin\theta_2 + i\sin\theta_2\cos\theta_2 i^2\sin\theta_2\sin\theta_2)}$  $=\frac{r_1((\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)+i(\sin\theta_1\cos\theta_2-\cos\theta_1\sin\theta_2))}{r_1(\cos\theta_2)r_2+\sin\theta_2}$  $r_2(\cos^2\theta_2 + \sin^2\theta_2)$
- $= \frac{r_1}{r_2} (\cos(\theta_1 \theta_2) + i \sin(\theta_1 \theta_2))$ Rewrite  $z_2$  in the form  $z_2 = r(\cos\theta + i\sin\theta)$ : modulus-argument form.
- trigonometric addition formulae together with the identity  $\sin^2\theta + \cos^2\theta \equiv 1$ ← Pure Year 1, Section 10.3  $z_2$  is not initially given in

Links The last step of this

working makes use of the

The last step of this working

← Pure Year 2, Section 7.1

makes use of the trigonometric

Im A

Express  $z_1 z_2$  in the form x + iy.

 $cos\left(-\frac{2\pi}{5}\right) = cos\frac{2\pi}{5}$  and  $sin\left(-\frac{2\pi}{5}\right) = -sin\frac{2\pi}{5}$ 

 $z_2 = 3\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right) -$ 



0 Re

You can derive a Cartesian form of the equation of a circle from this form by squaring both sides:

Given  $z_1 = x_1 + iy_1$  and  $z_2 = x_2 + iy_2$ , the locus of points z on an Argand diagram such that

 $|z-z_1|=|z-z_2|$  is the perpendicular bisector of the line segment joining  $z_1$  and  $z_2$ .

Locus of points.  
Every point 
$$z$$
 on the line is an equal distance from points  $z_1$  and  $z_2$ .

 $(x - x_1)^2 + (y - y_1)^2 = r^2$  Since  $|p + qi| = \sqrt{p^2 + q^2}$ 

 $|z-z_1|=r$ 

 $|(x - x_1) + i(y - y_1)| = r$ 

Im A

fixed point  $z_1$  parallel to the real axis.

0 Re **11** Given  $z_1 = x_1 + iy_1$ , the locus of points z on an Argand diagram such that arg  $(z - z_1) = \theta$  is a

half-line from, but not including, the fixed point  $z_1$  making an angle  $\theta$  with a line from the

 $z_1 = x_1 + iy_1$ 



