Summary of key points

1 A vector equation of a straight line passing through the point A with position vector **a**, and parallel to the vector **b**, is $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$

where
$$\lambda$$
 is a scalar parameter.

2 A vector equation of a straight line passing through the points C and D, with position vectors c and d respectively, is

$$\mathbf{r} = \mathbf{c} + \lambda(\mathbf{d} - \mathbf{c})$$

where λ is a scalar parameter.

3 If
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, the equation of the line with vector equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ can be given in Cartesian form as:

in Cartesian form as:

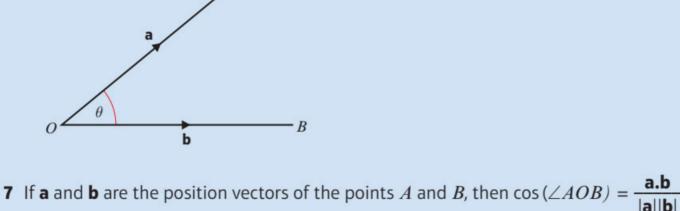
 $\frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3}$

in Cartesian form as:
$$\frac{x - a_1}{b} = \frac{y - a_2}{b} = \frac{z - a_3}{b}$$

4 The vector equation of a plane is $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$, where:

Each of these three expressions is equal to λ .

- a is the position vector of a point in the plane • **b** and **c** are non-parallel, non-zero vectors in the plane
- λ and μ are scalars
- **5** A Cartesian equation of a plane in three dimensions can be written in the form ax + by + cz = d
- where a, b, c and d are constants, and $\begin{pmatrix} a \\ b \end{pmatrix}$ is the normal vector to the plane. 6 The scalar product of two vectors a and b is written as a.b (say 'a dot b'), and defined as
 - $\mathbf{a.b} = |\mathbf{a}||\mathbf{b}|\cos\theta$ where θ is the angle between **a** and **b**.



- **8** The non-zero vectors **a** and **b** are perpendicular if and only if $\mathbf{a.b} = 0$. **9** If **a** and **b** are parallel, $\mathbf{a.b} = |\mathbf{a}||\mathbf{b}|$. In particular, $\mathbf{a.a} = |\mathbf{a}|^2$.
- **10** If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$

$$\mathbf{a.b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1b_1 + a_2b_2 + a_3b_3$$
11 The acute angle θ between two intersecting straight lines is given by

where **a** and **b** are direction vectors of the lines.

on l_1 , B lies on l_2 and AB is perpendicular to both lines.

 $\mathbf{r.n} = k$ is given by the formula

 $\mathbf{r.n}_2 = k_2$ is given by the formula

vector n.

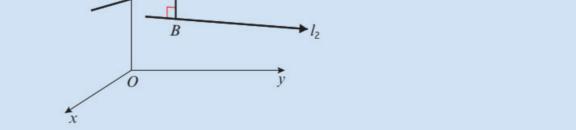
- $\cos \theta = \left| \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|} \right|$
- plane with position vector a. **13** The acute angle θ between the line with equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and the plane with equation

12 The scalar product form of the equation of a plane is $\mathbf{r.n} = k$ where $k = \mathbf{a.n}$ for any point in the

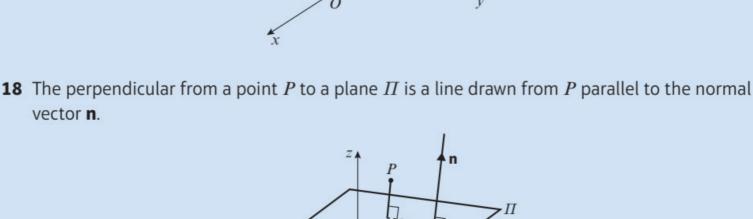
$$\sin\theta = \left|\frac{\mathbf{b.n}}{|\mathbf{b}||\mathbf{n}|}\right|$$
14 The acute angle θ between the plane with equation $\mathbf{r.n}_1 = k_1$ and the plane with equation

 $\cos \theta = \left| \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|} \right|$ **15** Two lines are **skew** if they are not parallel and they do not intersect.

16 For any two non-intersecting lines l_1 and l_2 there is a unique line segment AB such that A lies



17 The perpendicular from a point P to a line l is a line drawn from P at right angles to l.



 Π is written in the form $\mathbf{r.\hat{n}} = k$, where $\hat{\mathbf{n}}$ is a unit vector perpendicular to Π . The perpendicular distance from the point with coordinates (α, β, γ) and the plane with equation ax + by + cz = d is $\frac{|a\alpha + b\beta + c\gamma - d|}{\sqrt{a^2 + b^2 + c^2}}$

19 k is the length of the perpendicular from the origin to a plane Π , where the equation of plane