Summary of key points

- **1** The integral $\int_a^b f(x) dx$ is **improper** if either:
 - · one or both of the limits is infinite
 - f(x) is undefined at x = a, x = b or another point in the interval [a, b].
- **2** The **mean value** of the function f(x) over the interval [a, b], is given by

$$\frac{1}{b-a}\int_a^b f(x) dx$$

- **3** If the function f(x) has mean value \overline{f} over the interval [a, b], and k is a real constant, then:
 - f(x) + k has mean value $\bar{f} + k$ over the interval [a, b]
 - kf(x) has mean value $k\bar{f}$ over the interval [a, b]
 - -f(x) has mean value $-\bar{f}$ over the interval [a, b].
- $4 \cdot \frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1 x^2}}$
 - $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$
 - $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$
- 5 $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + c, a > 0, |x| < a$ • $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + c$