Summary of key points

- **1** For a point P with polar coordinates (r, θ) and Cartesian coordinates (x, y),
 - $r\cos\theta = x$ and $r\sin\theta = y$
 - $r^2 = x^2 + y^2$, $\theta = \arctan\left(\frac{y}{x}\right)$

Care must be taken to ensure that θ is in the correct quadrant.

- **2** r = a is a circle with centre O and radius a.
 - $\theta = \alpha$ is a half-line through O and making an angle α with the initial line.
 - $r = a\theta$ is a spiral starting at O.
 - The **area of a sector** bounded by a polar curve and the half-lines $\theta = \alpha$ and $\theta = \beta$, where θ is in radians, is given by the formula

Area =
$$\frac{1}{2} \int_{\Omega}^{\beta} r^2 d\theta$$

- To find a tangent parallel to the initial line set $\frac{dy}{d\theta} = 0$.
 - To find a tangent perpendicular to the initial line set $\frac{dx}{d\theta} = 0$.