Summary of key points

Simple harmonic motion (S.H.M.) is motion in which the acceleration of a particle *P* is always towards a fixed point *O* on the line of motion of *P*. The acceleration is proportional to the displacement of *P* from *O*.

$$\mathbf{2} \quad \ddot{x} = v \frac{\mathrm{d}v}{\mathrm{d}x}$$

3 For a particle moving with **damped harmonic motion**

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + k \frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = 0$$

where x is the displacement from a fixed point at time t, and k and ω^2 are positive constants.

4 For a particle moving with forced harmonic motion

$$\frac{d^2x}{dt^2} + k\frac{dx}{dt} + \omega^2 x = f(t)$$

where x is the displacement from a fixed point at time t, and k and ω^2 are positive constants.

5 You can solve coupled first-order linear differential equations by eliminating one of the dependent variables to form a second-order differential equation.