Summary of key points

- **1** The event A and B can be written as $A \cap B$. The ' \cap ' symbol is the symbol for **intersection**. The event A or B can be written as $A \cup B$. The ' \cup ' symbol is the symbol for **union**. The event not A can be written as A'. This is also called the **complement** of A.
- The probability that B occurs given that A has already occurred is written as P(B|A). For independent events, P(A|B) = P(A|B') = P(A), and P(B|A) = P(B|A') = P(B).
- 3 $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 4 $P(B|A) = \frac{P(B \cap A)}{P(A)}$ so $P(B \cap A) = P(B|A) \times P(A)$

Had a look

Nearly there

Nailed it!

Conditional probability

If one event has already occurred, the probability of other events occurring might change. This is called conditional probability. The probability that an event X occurs given that an event Y has already occurred is written as $P(X \mid Y)$.

Using Venn diagrams

You can solve some conditional probability problems using a Venn diagram. If an event has already occurred, then the sample space for the other events is **restricted**. These Venn diagrams show the outcomes of two events, A and B:

Restricted sample space given that event B has occurred

$$P(A \mid B) = \frac{3}{3+4} = \frac{3}{7}$$

Worked example

This Venn diagram shows the burger toppings chosen by a group of 50 diners at a restaurant. The choices are avocado, bacon and cheese.

A diner is selected at random.

(a) Given that the diner chooses bacon, find the probability that she also chooses avocado. (2 marks)

$$\frac{8+2}{8+2+11+5} = \frac{10}{26} = \frac{5}{13}$$

A second diner is selected at random.

(b) Given that the diner chooses at least one of the three toppings, find the probability that she chooses all three. (3 marks)

$$\frac{2}{4+8+5+1+2+11+7} = \frac{2}{38} = \frac{1}{19}$$

(a) Look at this restricted sample space:

Of the 8 + 2 + 11 + 5 = 26 diners who chose bacon, 8 + 2 = 10 also chose avocado.

(b) Look at this restricted sample space:

Look at this restricted sample space:

Now try this

Look at the Venn diagram in the Worked example. A third diner is selected at random. Given that the diner chooses either avocado or bacon, work out the probability that she chooses cheese.

(3 marks)

Probability formulae

These two probability formulae are given in the formulae booklet. If a probability problem involves **set notation** (\cup and \cap) and it does not ask you to draw a Venn diagram, it might be easier to solve it using these formulae:

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A) P(B|A)$$

This is the conditional probability rule.

Look at the restricted sample space after event A has occurred:

 $= \frac{P(A \cap B)}{P(A)}$

This is sometimes called the addition rule.

Worked example

Two events A and B are such that $P(A \cap B') = 0.15$, P(B) = 0.3 and $P(A \mid B) = 0.2$ Find the value of

(a) $P(A \cap B)$

$$P(A \cap B) = P(B) \times P(A \mid B)$$

= 0.3 × 0.2
= 0.06

(b) $P(A \cup B)$

0.15 + 0.3 = 0.45

(c) P(A)

(2 marks)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0.45 = P(A) + 0.3 - 0.06$$

$$P(A) = 0.21$$

- (a) This is the conditional probability rule.
- (b) Use the fact that

 $P(A \cup B) = P(A \cap B') + P(B)$

You can see this from this Venn diagram, but it is a useful formula to learn.

(c) This is the addition rule. You could also use the fact that

$$P(A) = P(A \cap B') + P(A \cap B)$$

= 0.15 + 0.06

Now try this

In a survey of a group of students $\frac{2}{3}$ played competitive sports and $\frac{2}{5}$ played video games. Of those who played competitive sports, $\frac{7}{25}$ also played video games.

Find the probability that a randomly selected member of the group

- (a) plays competitive sports and video games (2 marks)
- (b) plays neither competitive sports nor video games. (4 marks)

You might need to define your own events. For the randomly selected student, there are two events:

C = plays competitive sports

V =plays video games.

You can rewrite the information given as

$$P(C) = \frac{2}{3}$$
, $P(V) = \frac{2}{5}$ and $P(V \mid C) = \frac{7}{25}$

- (a) You want to find $P(C \cap V)$. You can use the formula $P(C \cap V) = P(C) \times P(V \mid C)$
- (b) You want to find $P(C' \cap V')$. Use your result to part (a), and the addition rule. Then use the fact that

 $P(C' \cap V') = 1 - P(C \cup V)$

