Probability Distributions

You need to know about a couple of specific statistical distributions for A-Level Maths. But first of all, you need to know what statistical distributions are...

Random Variables have Probability Distributions

This first bit isn't particularly interesting. But understanding the difference between X and x (bear with me) might make the later stuff a bit less confusing.

- 1) X (upper case) is just the name of a random variable. So X could be 'score on a fair, six-sided dice'.
- A random variable doesn't have a fixed value. Like with the dice score the value on any 'roll' is all down to chance.
- 3) x (lower case) is a particular value that X can take. So for one roll of the dice, x could be 1, 2, 3, 4, 5 or 6.
- 4) Discrete random variables only have a certain number of possible values. Often these values are whole numbers, but they don't have to be. Usually there are only a few possible values (e.g. the possible scores with one roll of a dice).
- 5) A probability distribution is a table showing the possible values of x, and the probability for each one.
- 6) A probability function is a formula that generates the probabilities for different values of x.

All the probabilities Add Up To 1

For a discrete random variable X:

Example: The random variable X, where X can only take values 1, 2, 3, has probability function P(X = x) = kx for x = 1, 2, 3. Find the value of k.

X has three possible values (x = 1, 2 and 3), and the probability of each is kx (where you need to find k).

It's easier to understand with a table:

x	1	2	3
P(X = x)	$k \times 1 = k$	$k \times 2 = 2k$	$k \times 3 = 3k$

Now just use the formula: $\sum P(X = x) = 0$

Here, this means: k + 2k + 3k = 6k = 1, so $k = \frac{1}{6}$

For a discrete random variable where every value of X is equally likely, you get a discrete uniform distribution — e.g. rolling a normal unbiased dice.

The **mode** is the **most likely** value — so it's the value with the **biggest probability**.

Example: The discrete random variable *X*, where *X* can only take values 0, 1, 2, 3, 4, has the probability distribution shown below.

x	0	1	2	3	4
P(X = x)	0.1	0.2	0.3	0.2	а

Find: a) the value of a, b) $P(2 \le X < 4)$, c) the mode.

a) Use the formula $\sum_{x} P(X = x) = 1$ again.

From the table:
$$0.1 + 0.2 + 0.3 + 0.2 + a = 1$$

 $0.8 + a = 1$
 $a = 0.2$

Careful with the inequality signs — you need to include x = 2 but not x = 4.

b) This is asking for the probability that 'X is greater than or equal to 2, but less than 4'. Easy — just add up the probabilities.

$$P(2 \le X < 4) = P(X = 2) + P(X = 3) = 0.3 + 0.2 = 0.5$$

c) The mode is the value of x with the biggest probability — so mode = 2.

Probability Distributions

Draw a Diagram showing All Possible Outcomes

Example:

An unbiased six-sided dice has faces marked 1, 1, 1, 2, 2, 3.

The dice is rolled twice. Let X be the random variable "sum of the two scores on the dice".

- a) Show that $P(X = 4) = \frac{5}{18}$.
- b) Find the probability distribution of X.
- Make a table showing the 36 possible outcomes.

			_			-		
		Score on roll 1						
	+	1	1	1	2	2	3	
	1	2	2	2	3	3	4	
112	1	2	2	2	3	3	4	
Score on roll 2	1	2	2	2	3	3	4	
e o	2	3	3	3	4	4	5	
cor	2	3	3	3	4	4	5	
0,	3	4	4	4	5	5	6	

You can see from the table that 10 of these have the outcome X = 4, so $P(X = 4) = \frac{10}{36} = \frac{5}{18}$

so
$$P(X = 4) = \frac{10}{36} = \frac{5}{18}$$

b) Use the table to work out the probabilities for the other outcomes and then fill in a table summarising the probability distribution:

 $\frac{9}{36}$ of the outcomes are a score of 2

 $\frac{12}{36}$ of the outcomes are a score of 3

 $\frac{4}{36}$ of the outcomes are a score of 5

 $\frac{1}{36}$ of the outcomes are a score of 6

x	2	3	4	5	6
P(X = x)	<u>1</u>	<u>1</u> 3	<u>5</u> 18	<u>1</u> 9	<u>1</u> 36

Do complicated questions Bit By Bit

Example:

A game involves rolling two fair, six-sided dice. If the sum of the scores is greater than 10 then the player wins 50p. If the sum is between 8 and 10 (inclusive) then they win 20p. Otherwise they get nothing. If X is the random variable "amount player wins in pence", find the probability distribution of X.

There are 3 possible values for X (0, 20 and 50) and you need the probability of each. To work these out, you need the probability of getting various totals on the dice.

1) You need to know P(8 ≤ score ≤ 10) — the probability that the score is between 8 and 10 inclusive (i.e. including 8 and 10) and P(11 ≤ score ≤ 12) — the probability that the score is greater than 10. Use a table:

		Score on dice 1						
	+	1	2	3	4	5	6	
	1	2	3	4	5	6	7	
ce 2	2	3	4	5	6	7	8	
ġ	3	4	5	6	7	8	9	
e or	4	5	6	7	8	9	10	
Score on dic	5	6	7	8	9	10	11	
S	6	7	8	9	10	11	12	

The table: making things easier to understand since 3000 BC (DISCLAIMER: CGP takes no responsibility for the historical accuracy of this 'fact').

2) There are 36 possible outcomes:

12 of these have a total of 8, 9 or 10 so $P(8 \le \text{score} \le 10) = \frac{12}{36} = \frac{1}{3}$ 3 of these have a total of 11 or 12 so $P(11 \le score \le 12) = \frac{3}{36} = \frac{1}{12}$

3) Use these to find the probabilities you need:

$$P(X = 20p) = P(8 \le score \le 10) = \frac{1}{3}$$

$$P(X = 50p) = P(11 \le score \le 12) = \frac{1}{12}$$

To find P(X = 0) take the total of the two probabilities above from 1 (since X = 0 is the only other possibility).

$$P(X = 0) = 1 - \left[\frac{12}{36} + \frac{3}{36} \right] = 1 - \frac{15}{36} = \frac{21}{36} = \frac{7}{12}$$

4) Now just stick all this info in a table (and check that the probabilities all add up to 1):

х	0	20	50
P(X = x)	7 12	<u>1</u>	<u>1</u> 12

Check:
$$\frac{7}{12} + \frac{1}{3} + \frac{1}{12} = \frac{7}{12} + \frac{4}{12} + \frac{1}{12} = 1$$

Probability Distributions

The Cumulative Distribution Function is a Running Total of probabilities

The **cumulative distribution function** F(x) gives the probability that X will be **less than or equal to** a particular value.

$$F(x_0) = P(X \le x_0) = \sum_{x \le x_0} p(x)$$

Example:

The probability distribution of the discrete random variable H, where H can only take values 0.1, 0.2, 0.3, 0.4, is shown in the table. Draw up a table to show the cumulative distribution of H.

h	0.1	0.2	0.3	0.4
P(H = h)	1/4	1/4	<u>1</u> 3	<u>1</u>

There are 4 values of *h*, so you have to find the probability that *H* is **less than or equal to** each of them in turn. It sounds trickier than it actually is — you only have to add up a few probabilities...

$$F(0.1) = P(H \le 0.1)$$
 — this is the same as $P(H = 0.1)$, since H can't be less than 0.1. So $F(0.1) = \frac{1}{4}$

$$F(0.2) = P(H \le 0.2)$$
 — this is the probability that $H = 0.1$ or $H = 0.2$.

$$F(0.2) = P(H = 0.1) + P(H = 0.2) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$F(0.3) = P(H \le 0.3) = P(H \le 0.2) + P(H = 0.3) = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$
 Here you're just adding one more probability to the previous cumulative probability.

Finally, put these values in a table, and you're done:

h	0.1	0.2	0.3	0.4
$F(h) = P(H \le h)$	<u>1</u>	1/2	<u>5</u>	1 4

 $P(X \le largest value of x)$ is always 1.

Example: For a discrete random variable X, where X can only take values 1, 2, 3, 4, the cumulative distribution function F(x) = kx, for x = 1, 2, 3 and 4. Find k, and the probability function.

- 1) First find k. You know that X has to be 4 or less so $P(X \le 4) = 1$. Put x = 4 into the cumulative distribution function: $F(4) = P(X \le 4) = 4k = 1$, so $k = \frac{1}{4}$.
- 2) Now you can work out the probabilities of *X* being less than or equal to 1, 2, 3 and 4. $F(1) = P(X \le 1) = 1 \times k = \frac{1}{4}$, $F(2) = P(X \le 2) = 2 \times k = \frac{1}{2}$, $F(3) = P(X \le 3) = 3 \times k = \frac{3}{4}$, $F(4) = P(X \le 4) = 1$
- 3) Then $P(X = 4) = P(X \le 4) P(X \le 3) = 1 \frac{3}{4} = \frac{1}{4}$, $P(X = 3) = P(X \le 3) P(X \le 2) = \frac{3}{4} \frac{1}{2} = \frac{1}{4}$, Think about it if it's less than or equal to 4, but it's **not** less than or equal to 3, then it has to be 4. $P(X = 2) = P(X \le 2) P(X \le 1) = \frac{1}{2} \frac{1}{4} = \frac{1}{4} \text{ and } P(X = 1) = P(X \le 1) = \frac{1}{4}$ Because × doesn't take any values less than 1.

 $P(X = 2) = P(X \le 2) - P(X \le 1) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$ and $P(X = 1) = P(X \le 1) = \frac{1}{4}$ any values less that 4) Finish it all off by making a table. The probability distribution of X is: $\begin{bmatrix} x & 1 & 2 & 3 \end{bmatrix}$

So the probability function is: $P(X = x) = \frac{1}{4}$ for x = 1, 2, 3, 4

is:	x	1	2	3	4
	P(X = x)	1 4	1/4	1/4	1/4
<u> </u>	his is a unifo	rm dist	ribution	n (see	

Practice Question

- Q1 The random variable X, where X takes values 1, 2, 3, 4, has probability function P(X = x) = kx for x = 1, 2, 3, 4.
 - a) Find the value of k.
- b) Find P(X > 2)

c) Find P($1 \le X \le 3$)

- d) Draw a table to show:
- (i) the probability distribution,
- (ii) the cumulative distribution.

Exam Question

Q1 The probability function for the discrete random variable X is given by $P(X = x) = \frac{1}{k}x^2$ for x = 1, 2, 3, 4. Find the value of k and $P(X \le 2)$. [4 marks]

Fact: the probability of this coming up in the exam is less than or equal to one...

If you've got a probability distribution, you can work out the table for the cumulative distribution function and vice versa. Don't forget, all the stuff so far is for discrete variables — these can only take a certain number of values.