The Binomial Distribution

Welcome to the Binomial Distribution. It's quite a gentle introduction, because this page is basically about counting. If you're thinking some of this looks familiar, you're dead right — you met the binomial expansion back in Section 4.

n different objects can be arranged in n! different ways...

There are n! ("n factorial") ways of arranging n different objects, where $n! = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1$.

Example:

- a) In how many ways can 4 different ornaments be arranged on a shelf?
- b) In how many ways can 8 different objects be arranged?
- You have 4 choices for the first ornament, 3 choices for the second ornament, 2 choices for the third ornament, and 1 choice for the last ornament.
 So there are 4 × 3 × 2 × 1= 4! = 24 arrangements.
- b) There are 8! = 40 320 arrangements.

Calculators have a factorial = button so you don't need to = type all the numbers out.

Of course, not all ornaments deserve to go on the shelf.

...but Divide by r! if r of these objects are the Same

If r of your n objects are **identical**, then the total number of possible arrangements is $(n! \div r!)$.

Example

- a) In how many different ways can 5 objects be arranged if 2 of those objects are identical?
- b) In how many different ways can 7 objects be arranged if 4 of those objects are identical?
- a) Imagine those 2 identical objects were different. Then there would be 5! = 120 possible arrangements. But because those 2 objects are actually identical, you can always swap them round without making a different arrangement. So there are really only 120 ÷ 2 = 60 different ways to arrange the objects.
- b) There are $\frac{n!}{r!} = \frac{7!}{4!} = \frac{5040}{24} = 210$ different ways to arrange the objects.

Use Binomial Coefficients if there are Only Two Types of object

See p.50 for more about = binomial coefficients.

Binomial Coefficients

$$\binom{n}{r} = {^nC_r} = \frac{n!}{r!(n-r)!}$$
 nC_r and $\binom{n}{r}$ both mean $\frac{n!}{r!(n-r)!}$

Example:

- a) In how many different ways can *n* objects of two types be arranged if *r* are of the first type?
- b) How many ways are there to select 11 players from a squad of 16?
- c) How many ways are there to pick 6 lottery numbers from 59?
- a) If the objects were all **different**, there would be n! ways to arrange them. But r of the objects are of the same type and could be **swapped around**, so divide by r!. Since there are only **two types**, the other (n-r) could also be **swapped around**, so divide by (n-r)!. This means there are $\frac{n!}{r!(n-r)!}$ arrangements.
- b) This is basically a 'number of different arrangements' problem. Imagine the 16 players are lined up then you could 'pick' or 'not pick' players by giving each of them a sign marked with a tick or a cross. So just find the number of ways to arrange 11 ticks and 5 crosses this is $\binom{16}{11} = \frac{16!}{11!5!} = 4368$.
- c) Again, numbers are either 'picked' or 'unpicked', so there are $\binom{59}{6} = \frac{59!}{6!53!} = 45\ 057\ 474$ possibilities.

The Binomial Distribution

Use Binomial Coefficients to count arrangements of 'successes' and 'failures'

For this bit, you need to use the fact that if p = P(something happens), then 1 - p = P(that thing doesn't happen).

I toss a fair coin 5 times. Find the probability of: a) 0 heads, b) 1 head,

First, note that each coin toss is **independent** of the others.

That means you can multiply individual probabilities together.

a)
$$P(0 \text{ heads}) = P(\text{tails}) \times P(\text{tails}) \times P(\text{tails}) \times P(\text{tails}) \times P(\text{tails}) = 0.5^5 = 0.03125$$

P(tails) = P(heads) = 0.5
These are the
$$\binom{5}{1}$$
 = 5 ways
= 0.5⁵ = 0.03125 to arrange 1 head and 4 tails.

 $P(1 \text{ head}) = [P(\text{heads}) \times P(\text{tails}) \times P(\text{tails}) \times P(\text{tails}) \times P(\text{tails})] + [P(\text{tails}) \times P(\text{heads}) \times P(\text{tails}) \times P(\text{tails})] \times P(\text{tails})$ + $[P(tails) \times P(tails) \times P(tails) \times P(tails) \times P(tails)]$ + $[P(tails) \times P(tails) \times P(tails) \times P(tails) \times P(tails)]$

+ $[P(tails) \times P(tails) \times P(tails) \times P(tails) \times P(heads)]$

So P(1 head) =
$$0.5 \times (0.5)^4 \times {5 \choose 1} = 0.03125 \times \frac{5!}{1!4!} = 0.15625$$
 = P(heads) × [P(tails)]⁴ × ways to arrange 1 head and 4 tails

P(2 heads) = $[P(heads)]^2 \times [P(tails)]^3 \times ways$ to arrange 2 heads and 3 tails = $(0.5)^2 \times (0.5)^3 \times {5 \choose 2} = 0.3125$

The Binomial Probability Function gives P(r successes out of n trials)

The previous example really just shows why this thing-in-a-box must be true.

Binomial Probability Function

$$P(r \text{ successes in } n \text{ trials}) = \binom{n}{r} \times [P(\text{success})]^r \times [P(\text{failure})]^{n-r}$$

This is the applicability function This is the probability function

I roll a fair six-sided dice 5 times. Find the probability of rolling: b) 3 sixes, c) 4 numbers less than 3. a) 2 sixes,

Again, note that each roll of a dice is independent of the other rolls.

For this part, call "roll a 6" a success, and "roll anything other than a 6" a failure.

Then P(roll 2 sixes) = $\binom{5}{2} \times (\frac{1}{6})^2 \times (\frac{5}{6})^3 = \frac{5!}{2!3!} \times \frac{1}{36} \times \frac{125}{216} = 0.161$ (3 d.p.)

- Again, call "roll a 6" a success, and "roll anything other than a 6" a failure. Then P(roll 3 sixes) = $\binom{5}{3} \times \left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)^2 = \frac{5!}{3!2!} \times \frac{1}{216} \times \frac{25}{36} = 0.032$ (3 d.p.)
- Notice how $\binom{5}{2} = \binom{5}{3}$.

 In fact, $\binom{n}{r} = \binom{n}{n-r}$.
- This time, success means "roll a 1 or a 2", while failure is now "roll a 3, 4, 5 or 6". Then P(roll 4 numbers less than 3) = $\binom{5}{4} \times \left(\frac{1}{3}\right)^4 \times \frac{2}{3} = \frac{5!}{4!1!} \times \frac{1}{81} \times \frac{2}{3} = 0.041$ (3 d.p.)

There are 5 Conditions for a Binomial Distribution

Binomial Distribution: B(n, p)

A random variable X follows a binomial distribution if these 5 conditions are satisfied:

- 1) There is a fixed number (n) of trials.
- Binomial variables are discrete \equiv Each trial results in either "success" or "failure". they only take values O, 1, 2... n.
- All the trials are independent.
- 4) The probability of "success" (p) is the same in each trial. n and p are the parameters
- The variable is the total number of successes in the n trials. of the binomial distribution. Then, $P(X = x) = \binom{n}{x} \times p^x \times (1 - p)^{n-x}$ for x = 0, 1, 2, ..., n, and you can write $X \sim B(n, p)$.

If you're asked to comment on the appropriateness of a binomial model, you should check whether the variable satisfies all of these conditions.

The T The expected number of successes is given by $(n \times p)$.

The Binomial Distribution

Use your Calculator to find Binomial Probabilities

Example

I have an unfair coin. When I toss this coin, the probability of getting heads is 0.35. Find the probability that it will land on heads fewer than 3 times when I toss it 12 times in total.

If the random variable *X* represents the number of heads I get in 12 tosses, then $X \sim B(12, 0.35)$. You need to find $P(X \le 2)$. You could work this out 'manually'...

P(0 heads) + P(1 head) + P(2 heads) =
$$\begin{bmatrix} \binom{12}{0} \times 0.35^{0} \times 0.65^{12} \end{bmatrix} + \begin{bmatrix} \binom{12}{1} \times 0.35^{1} \times 0.65^{11} \end{bmatrix} + \begin{bmatrix} \binom{12}{2} \times 0.35^{2} \times 0.65^{10} \end{bmatrix}$$
$$= 0.00568... + 0.03675... + 0.10884... = 0.15128... = 0.151 (3 s.f.)$$

However, it's much quicker to use the binomial cumulative distribution function (cdf) on your calculator.

This calculates $P(X \le x)$, for $X \sim B(n, p)$ — just enter the **correct values of** n, p and x.

For example, here, n = 12 and p = 0.35, and you need $P(X \le 2)$ (i.e. x = 2).

The calculator tells you that this is 0.15128..., which is what you worked out above.

Be careful though:

- Some calculators have both a binomial probability distribution function (pdf) and a binomial cumulative distribution function (cdf). You use the pdf to find e.g. P(X = 2) (as on the previous page) and the cdf to find e.g. P(X ≤ 2) (as above).
- The cdf gives you $P(X \le x)$ if you want $P(X \ge x)$ (or P(X < x) etc.) you'll have to do some fancy probability-wrangling. E.g. $P(X < 7) = P(X \le 6)$, or $P(X > 4) = 1 P(X \le 4)$.

Countless secrets contained within...

Example:

I have a different unfair coin. When I toss this coin, the probability of getting tails is 0.6. The random variable X represents the number of tails in 12 tosses, so $X \sim B(12, 0.6)$. If I toss this coin 12 times, find the probability that:

- a) it will land on tails more than 8 times, b) it will land on heads exactly 9 times,
- c) it will land on tails more than 3 but fewer than 6 times.
- a) You're looking for P(X > 8), which is $1 P(X \le 8)$ (since 'X > 8' and ' $X \le 8$ ' are complementary events see p.153). So, from your calculator: P(X > 8) = 1 0.77466... = 0.225 (3 s.f.)
- b) If the coin lands on **heads** 9 times, then it lands on **tails** 3 times. You could use the binomial pdf to go straight to the answer, or if your calculator doesn't have one, you can use the cdf instead: $P(\text{heads 9 times}) = P(X = 3) = P(X \le 3) P(X \le 2) = 0.01526... 0.00281... =$ **0.0125**(3 s.f.)
- c) $P(3 < X < 6) = P(X < 6) P(X \le 3) = P(X \le 5) P(X \le 3) = 0.15821... 0.01526... = 0.143 (3 s.f.)$

Practice Questions

- Q1 Find the probability of: a) getting exactly 9 heads when you toss a fair coin 10 times,
 - b) getting at least 9 heads when you toss a fair coin 10 times.
- Q2 Find, to 4 decimal places: a) P(X = 4) if $X \sim B(14, 0.27)$ b) $P(Y \le 15)$ if $Y \sim B(20, 0.4)$

Exam Questions

- Q1 The random variable X follows the binomial distribution $X \sim B(12, 0.6)$. Find:
 - a) P(X < 8) [2 marks]
- b) P(X = 5) [1 mark]
- c) $P(3 < X \le 7)$ [2 marks]
- Q2 Apples are stored in crates of 40. The probability of any apple containing a maggot is 0.15, and is independent of any other apple containing a maggot. In a random sample of 40 apples, find the probability that:
 - a) fewer than 6 apples contain maggots, [2 marks]
- b) more than 2 apples contain maggots.
- c) Jin has 3 crates. Find the probability that more than 1 crate contains more than 2 apples with maggots. [3 marks]
- d) Give one criticism of the assumption that apples contain maggots independently of each other.

[1 mark]

[2 marks]

I used up all my binomial jokes in Section 4...

Here's a handy trick that might save some time on certain questions: if the number of successes is $X \sim B(n, p)$, then the number of failures is $Y \sim B(n, 1 - p)$. For example, the number of heads in the blue example is $Y \sim B(12, 0.4)$.