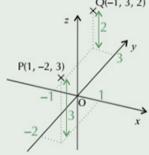
3D Vectors

Break up 3D Vector Problems into Smaller Chunks

Visualising 3D vector problems can be quite hard. So, if you're given a difficult 3D vector problem with multiple steps, it helps to break it down into chunks and draw them with simple 2D diagrams.

Points P and Q have position vectors $\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $-\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ respectively. Example: Point R divides the line PQ in the ratio 3:1. Find the position vector of R.

First you need to find the vector PQ:


$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$$

= $(-1 - 1)\mathbf{i} + (3 - (-2))\mathbf{j} + (2 - 3)\mathbf{k}$
= $-2\mathbf{i} + 5\mathbf{j} - \mathbf{k}$

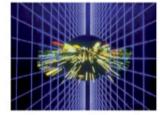
R divides \overrightarrow{PQ} in the ratio 3:1, so R is $\frac{3}{4}$ of the way along \overrightarrow{PQ} .

This means
$$\overrightarrow{PR} = \frac{3}{4}\overrightarrow{PQ} = \frac{3}{4}(-2\mathbf{i} + 5\mathbf{j} - \mathbf{k}) = -\frac{3}{2}\mathbf{i} + \frac{15}{4}\mathbf{j} - \frac{3}{4}\mathbf{k}$$
.

So
$$\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{PR} = (\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + -\frac{3}{2}\mathbf{i} + \frac{15}{4}\mathbf{j} - \frac{3}{4}\mathbf{k}$$

= $\left(1 - \frac{3}{2}\right)\mathbf{i} + \left((-2) + \frac{15}{4}\right)\mathbf{j} + \left(3 - \frac{3}{4}\right)\mathbf{k} = -\frac{1}{2}\mathbf{i} + \frac{7}{4}\mathbf{j} + \frac{9}{4}\mathbf{k}$

You could also do $\overrightarrow{OR} = \overrightarrow{OO} + \overrightarrow{OR}$


Practice Questions

- Q1 Point P has the coordinates (7, -3, -2). Find the position vector of P. Give your answer in unit vector form.

a)
$$3i + 4j - 2k$$

b)
$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

- Q2 Find the **magnitudes** of these vectors: a) $3\mathbf{i} + 4\mathbf{j} 2\mathbf{k}$ Q3 Show that the vectors $\mathbf{v} = \begin{pmatrix} 3 \\ -3 \\ 6 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} -2 \\ 2 \\ -4 \end{pmatrix}$ are parallel.
- Q4 Find $\mathbf{a} + 2\mathbf{b} 3\mathbf{c}$ where $\mathbf{a} = 3\mathbf{i} + 7\mathbf{j} + \mathbf{k}$, $\mathbf{b} = -2\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ and $\mathbf{c} = \mathbf{i} 3\mathbf{j} + 2\mathbf{k}$.
- Q5 The position vectors of point S and T are $2\mathbf{i} 3\mathbf{j} + \mathbf{k}$ and $-\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$ respectively. Calculate the length of the line ST.

If vectors could dream, it would look something like this (probably)...

Exam Questions

Q1 Points P, Q and R have position vectors $\begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 7 \\ -5 \end{pmatrix}$ respectively. Show that \overrightarrow{OP} is parallel to \overrightarrow{OR} .

[2 marks]

- Q2 A skateboard ramp has vertices modelled with position vectors O = (0i + 0j + 0k) m, X = (3i j) m, Y = 5j mand Z = 4k m. Calculate the distance from the midpoint of OZ to the midpoint of XY to 3 s.f. [3 marks]
- Q3 a) The points A and B have position vectors $2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ and $-3\mathbf{i} + \mathbf{j} 3\mathbf{k}$ respectively. Show that $\overrightarrow{AB} = -5\mathbf{i} - 2\mathbf{j} - 7\mathbf{k}$.

[1 mark] [5 marks]

b) The point M divides the line AB in the ratio 2:1. Calculate the distance of M from the origin.

Vectors let you flit between dimensions like your favourite sci-fi hero...

What do you mean you don't have a favourite sci-fi hero? Urgh, you haven't lived. Three dimensions doesn't really make things much more difficult — it just gives you an extra number to calculate with. You add, subtract and multiply 3D column vectors in the same way as 2D ones — you just have three rows to deal with.