Instant Maths Help:   07795 345383

Edexcel A Level - Exponential & Log Basics

Exponential Functions, Logs & Log Laws

Edexcel 8MA0/01 Jun 2024 AS Exam Q. 9 :   5 marks in 6:00 min.
Edexcel 8MA0/01 May 2024 AS Mock Q. 12 :   5 marks in 6:00 min.
Edexcel 9MA0/01 Jan 2024 A2 Mock Q. 1 :   3 marks in 3:36 min.
Edexcel 9MA0/02 Jun 2023 A2 Exam Q. 3 :   5 marks in 6:00 min.
OPEN FULL-WINDOW
Edexcel 9MA0/01 Jun 2023 A2 Exam Q. 6 :   6 marks in 7:12 min.
OPEN FULL-WINDOW
Edexcel 8MA0/01 Jun 2023 AS Exam Q. 9 :   5 marks in 6:00 min.
OPEN FULL-WINDOW
Edexcel 8MA0/01 Apr 2023 AS Mock Q. 11 :   7 marks in 8:24 min.
Edexcel 8MA0/01 Apr 2023 AS Mock Q. 6 :   3 marks in 3:36 min.
Edexcel 9MA0/01 Jan 2023 A2 Mock Q. 4 :   4 marks in 4:48 min.
Edexcel 9MA0/02 Jun 2022 A2 Exam Q. 2 :   4 marks in 4:48 min.
Edexcel 8MA0/01 Jun 2022 AS Mock Q. 3 :   3 marks in 3:36 min.
Edexcel 8MA0/01 Jun 2022 AS Exam Q. 9 :   6 marks in 7:12 min.
OPEN FULL-WINDOW
Edexcel 9MA0/02 Dec 2021 A2 Mock Q. 15 :   5 marks in 6:00 min.
Edexcel 9MA0/02 Nov 2021 A2 Exam Q. 3 :   3 marks in 3:36 min.
Edexcel 9MA0/01 Oct 2020 A2 Exam Q. 2 :   3 marks in 3:36 min.
Edexcel 9MA0/02 Oct 2020 A2 Exam Q. 3 :   5 marks in 6:00 min.
Edexcel 9MA0/02 Oct 2020 A2 Exam Q. 5 :   4 marks in 4:48 min.
Edexcel 9MA0/02 Mar 2020 A2 Mock Q. 1 :   5 marks in 6:00 min.
Edexcel 9MA0/02 Mar 2020 A2 Mock Q. 12 :   8 marks in 9:36 min.
Edexcel 9MA0/01 Jun 2019 A2 Exam Q. 9 :   5 marks in 6:00 min.
Edexcel 9MA0/01 Jun 2019 A2 Shadow Exam Q. 9 :   5 marks in 6:00 min.
Edexcel 8MA0/01 Jun 2018 AS Exam Q. 5 :   5 marks in 6:00 min.
Edexcel 9MA0/01 May 2018 A2 Mock Q. 5 :   10 marks in 12:00 min.
Edexcel 8MA0/01 May 2018 AS Mock Q. 9 :   6 marks in 7:12 min.
Edexcel 8MA0/01 Jun 2017 AS Sample Exam Q. 12 :   4 marks in 4:48 min.
Using exponential functions
Using logarithms to any base
Explore relationship between exponential functions and their derivatives
Exponential Graphs: ${a^x}$
The graph of $\color{blue}{ f(x) = {a^x} }$ is shown in blue, together with its tangent and gradient at a sample point in red.

By considering the gradient at x = 0, 1, 2, 3, can you predict what the gradient function of $\color{blue}{ f(x) = {a^x} }$ is?
Gradients of ${a^x}$ and ${e^x}$
Compare the graph of \(\color{blue}{ f(x) = {a^x} }\) with the graph of its gradient function, \(\color{green}{ f'(x) }\).
Adjust the value of a till the the two curves coincide.
  Settings
Current A Level Syllabus
Current Stage
Current Calculator