Edexcel 9MA0/01 Jun 2025 A2 Exam Q. 12
8 marks in 9:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Jun 2025 A2 Exam Q. 4
5 marks in 6:00 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 Jun 2025 AS Exam Q. 6 a
2 marks in 2:24 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 Dec 2024 AS Mock Q. 8
6 marks in 7:12 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Jun 2024 A2 Exam Q. 1
3 marks in 3:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 Jun 2024 AS Exam Q. 2
8 marks in 9:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 May 2024 AS Mock Q. 3
7 marks in 8:24 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Jan 2024 A2 Mock Q. 2
4 marks in 4:48 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/02 Jan 2024 A2 Mock Q. 3
8 marks in 9:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Jun 2023 A2 Exam Q. 2
6 marks in 7:12 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 Apr 2023 AS Mock Q. 4 ab
3 marks in 3:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/02 Jan 2023 A2 Mock Q. 4
4 marks in 4:48 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Jun 2022 A2 Exam Q. 2
3 marks in 3:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 Jun 2022 AS Exam Q. 2
7 marks in 8:24 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Dec 2021 A2 Mock Q. 2
7 marks in 8:24 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Nov 2021 A2 Exam Q. 1
3 marks in 3:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Jun 2019 A2 Exam Q. 1
3 marks in 3:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/01 Jun 2019 A2 Shadow Exam Q. 1
3 marks in 3:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 Jun 2019 AS Exam Q. 11
10 marks in 12:00 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/02 Jan 2019 A2 Mock Q. 4
6 marks in 7:12 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/02 Jun 2018 A2 Exam Q. 6
6 marks in 7:12 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 Jun 2018 AS Exam Q. 9
9 marks in 10:48 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 May 2018 AS Mock Q. 5
8 marks in 9:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 8MA0/01 Jun 2017 AS Sample Exam Q. 4 a
2 marks in 2:24 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Edexcel 9MA0/02 May 2017 A2 Sample Exam Q. 1
3 marks in 3:36 min.
Vote:
(0)
(0)
(0)
Request * Pop-Up Working * (0)
Request * Pop-Up Working * (0)
Visualise Factor Theorem 1
The factor theorem states that:
If ${\color{blue} f(x) }$ is a polynomial and ${\color{blue} f(a) = 0 }$, then ${\color{blue} (x - a) }$ is a factor of ${\color{blue} f(x) }$.
This display helps show how this comes about.
You can drag the red point to help read coordinates.
If ${\color{blue} f(x) }$ is a polynomial and ${\color{blue} f(a) = 0 }$, then ${\color{blue} (x - a) }$ is a factor of ${\color{blue} f(x) }$.
This display helps show how this comes about.
You can drag the red point to help read coordinates.
Visualise Factor Theorem 2
The factor theorem also states that:
If ${\color{blue} f(x) }$ is a polynomial and ${\color{blue} f( {b \over a} ) = 0 }$, then ${\color{blue} (ax - b) }$ is a factor of ${\color{blue} f(x) }$.
This display helps show how this comes about.
You can drag the red point to help read coordinates.
If ${\color{blue} f(x) }$ is a polynomial and ${\color{blue} f( {b \over a} ) = 0 }$, then ${\color{blue} (ax - b) }$ is a factor of ${\color{blue} f(x) }$.
This display helps show how this comes about.
You can drag the red point to help read coordinates.