Instant Maths Help:   07795 345383

OCR A Level Maths - Addition Formulae

Trig Addition Formulae & Double Angle Formulae

Prove addition formulae using geometric construction
Visualise sin(2x) Double Angle Formulae
The double angle formulae are useful in solving trigonometric formulae. This display allows you to view formulae relating to $\color{green}{\sin (a \, x)}$ with $\color{green}{a}$ an adjustable constant.

Initially, $\color{green}{a}$ is set to 0 so you can visualise how $\color{red}{\sin (c \, x) \cos (c \, x)}$ arises as the product of $\color{grey}{\sin (c \, x)}$ and $\color{grey}{\cos (c \, x)}$.

Then, by adjusting $\color{green}{a}$, $\color{red}{b}$ and $\color{red}{c}$ to make the green and red curves coincide, you can view the double angle formulae, not only for $\color{green}{\sin (2 \, x)}$, but for other values of $\color{green}{a}$ too.
Visualise cos(2x) Double Angle Formulae
The double angle formulae are useful in solving trigonometric formulae. This display allows you to view formulae relating to $\color{green}{\cos (a \, x)}$ with $\color{green}{a}$ an adjustable constant.

By adjusting $\color{green}{a}$, $\color{red}{b}$, $\color{red}{c}$ and $\color{red}{d}$ to make the green and red curves coincide, you can view the double angle formulae, for $\color{green}{\cos (2 \, x)}$ in its different forms.
Visualise sin(x ${ \pm }$ a) Addition Formulae
This display allows you to visualise the addition formulae:
$\color{purple}{ \sin (x + a) = \sin(x) \cos(a) + \cos(x) \sin(a) }$
$\color{purple}{ \sin (x - a) = \sin(x) \cos(a) - \cos(x) \sin(a) }$
Visualise cos(x ${ \pm }$ a) Addition Formulae
This display allows you to visualise the addition formulae:
$\color{purple}{ \cos (x + a) = \cos(x) \cos(a) - \sin(x) \sin(a) }$
$\color{purple}{ \cos (x - a) = \cos(x) \cos(a) + \sin(x) \sin(a) }$
  A Level Maths Settings
Current A Level Syllabus
Current Stage
Current Question Difficulty
Current Calculator