OCR (A) H240/02 Jun 2024 A2 Exam Q. 6 a : 5 marks in 6:00 min.
OCR (A) H230/02 Jun 2024 AS Exam Q. 7 : 9 marks in 10:48 min.
OCR (A) H240/01 Jun 2023 A2 Exam Q. 7 : 9 marks in 10:48 min.
OCR (A) H240/02 Nov 2020 A2 Exam Q. 6 : 3 marks in 3:36 min.
OCR (A) H240/03 Jun 2018 A2 Exam Q. 6 : 8 marks in 9:36 min.
OCR (A) H240/03 Jun 2017 A2 Sample Exam Q. 3 : 4 marks in 4:48 min.
OCR (A) H240/01 Jun 2017 A2 Sample Exam Q. 8 : 6 marks in 7:12 min.
Prove addition formulae using geometric construction
Visualise sin(2x) Double Angle Formulae
The double angle formulae are useful in solving trigonometric formulae.
This display allows you to view formulae relating to $\color{green}{\sin (a \, x)}$ with $\color{green}{a}$ an adjustable constant.
Initially, $\color{green}{a}$ is set to 0 so you can visualise how $\color{red}{\sin (c \, x) \cos (c \, x)}$ arises as the product of $\color{grey}{\sin (c \, x)}$ and $\color{grey}{\cos (c \, x)}$.
Then, by adjusting $\color{green}{a}$, $\color{red}{b}$ and $\color{red}{c}$ to make the green and red curves coincide, you can view the double angle formulae, not only for $\color{green}{\sin (2 \, x)}$, but for other values of $\color{green}{a}$ too.
Initially, $\color{green}{a}$ is set to 0 so you can visualise how $\color{red}{\sin (c \, x) \cos (c \, x)}$ arises as the product of $\color{grey}{\sin (c \, x)}$ and $\color{grey}{\cos (c \, x)}$.
Then, by adjusting $\color{green}{a}$, $\color{red}{b}$ and $\color{red}{c}$ to make the green and red curves coincide, you can view the double angle formulae, not only for $\color{green}{\sin (2 \, x)}$, but for other values of $\color{green}{a}$ too.
Visualise cos(2x) Double Angle Formulae
The double angle formulae are useful in solving trigonometric formulae.
This display allows you to view formulae relating to $\color{green}{\cos (a \, x)}$ with $\color{green}{a}$ an adjustable constant.
By adjusting $\color{green}{a}$, $\color{red}{b}$, $\color{red}{c}$ and $\color{red}{d}$ to make the green and red curves coincide, you can view the double angle formulae, for $\color{green}{\cos (2 \, x)}$ in its different forms.
By adjusting $\color{green}{a}$, $\color{red}{b}$, $\color{red}{c}$ and $\color{red}{d}$ to make the green and red curves coincide, you can view the double angle formulae, for $\color{green}{\cos (2 \, x)}$ in its different forms.
Visualise sin(x ${ \pm }$ a) Addition Formulae
This display allows you to visualise the addition formulae:
$\color{purple}{ \sin (x + a) = \sin(x) \cos(a) + \cos(x) \sin(a) }$
$\color{purple}{ \sin (x - a) = \sin(x) \cos(a) - \cos(x) \sin(a) }$
$\color{purple}{ \sin (x + a) = \sin(x) \cos(a) + \cos(x) \sin(a) }$
$\color{purple}{ \sin (x - a) = \sin(x) \cos(a) - \cos(x) \sin(a) }$
Visualise cos(x ${ \pm }$ a) Addition Formulae
This display allows you to visualise the addition formulae:
$\color{purple}{ \cos (x + a) = \cos(x) \cos(a) - \sin(x) \sin(a) }$
$\color{purple}{ \cos (x - a) = \cos(x) \cos(a) + \sin(x) \sin(a) }$
$\color{purple}{ \cos (x + a) = \cos(x) \cos(a) - \sin(x) \sin(a) }$
$\color{purple}{ \cos (x - a) = \cos(x) \cos(a) + \sin(x) \sin(a) }$