Selected: -
AS & A2 (Whole Course) - All Questions - Casio fx-991EX
Register / Login for More / Subscribe for All Without Ads
AS & A2 (Whole Course) - All Questions - Casio fx-991EX
Register / Login for More / Subscribe for All Without Ads


- Theory Theory Revision
- OCR (A) Qs OCR (A) Qs
- Edexcel Qs Edexcel Qs
- AQA Qs AQA Qs
- OCR MEI Qs OCR MEI Qs
- fx-991EX Use of fx-991EX
- GeoGebra GeoGebra
- JsxGraph JsxGraph
-
Jun 24 AS
P2 Q 2Jun 24 AS
P2 Q 2 -
Jun 24 A2
P3 Q 2Jun 24 A2
P3 Q 2 -
Jun 24 AS
P1 Q 3Jun 24 AS
P1 Q 3 -
Jun 23 A2
P1 Q 1Jun 23 A2
P1 Q 1 -
Jun 22 A2
P1 Q 10 aJun 22 A2
P1 Q 10 a -
Nov 21 AS
P1 Q 1Nov 21 AS
P1 Q 1 -
Nov 21 A2
P1 Q 10Nov 21 A2
P1 Q 10 -
Nov 20 AS
P2 Q 1Nov 20 AS
P2 Q 1 -
Nov 20 A2
P3 Q 1Nov 20 A2
P3 Q 1 -
Jun 19 A2
P3 Q 1Jun 19 A2
P3 Q 1 -
Jun 19 AS
P1 Q 6 aJun 19 AS
P1 Q 6 a -
Jun 18 AS
P2 Q 1Jun 18 AS
P2 Q 1 -
Jun 17 AS
P1 Q 3Jun 17 AS
P1 Q 3 -
Jun 17 A2
P1 Q 4Jun 17 A2
P1 Q 4
OCR (A) H230/02 Jun 2024 AS Exam Q. 2 :
5 marks in 6:00 min.
OCR (A) H240/03 Jun 2024 A2 Exam Q. 2 :
5 marks in 6:00 min.
OCR (A) H230/01 Jun 2024 AS Exam Q. 3 :
5 marks in 6:00 min.
OCR (A) H240/01 Jun 2023 A2 Exam Q. 1 :
5 marks in 6:00 min.
OCR (A) H240/01 Jun 2022 A2 Exam Q. 10 a :
4 marks in 4:48 min.
OCR (A) H230/01 Nov 2021 AS Exam Q. 1 :
7 marks in 8:24 min.
OCR (A) H240/01 Nov 2021 A2 Exam Q. 10 :
11 marks in 13:12 min.
OCR (A) H230/02 Nov 2020 AS Exam Q. 1 :
5 marks in 6:00 min.
OCR (A) H240/03 Nov 2020 A2 Exam Q. 1 :
2 marks in 2:24 min.
OCR (A) H240/03 Jun 2019 A2 Exam Q. 1 :
2 marks in 2:24 min.
OCR (A) H230/01 Jun 2019 AS Exam Q. 6 a :
2 marks in 2:24 min.
OCR (A) H230/02 Jun 2018 AS Exam Q. 1 :
6 marks in 7:12 min.
OCR (A) H230/01 Jun 2017 AS Sample Exam Q. 3 :
4 marks in 4:48 min.
OCR (A) H240/01 Jun 2017 A2 Sample Exam Q. 4 :
7 marks in 8:24 min.
-
Jun 24 AS
Q 4Jun 24 AS
Q 4 -
May 24 AS
Q 8May 24 AS
Q 8 -
Jan 24 A2
P2 Q 4Jan 24 A2
P2 Q 4 -
Jun 23 AS
Q 3Jun 23 AS
Q 3 -
Jun 23 A2
P1 Q 8Jun 23 A2
P1 Q 8 -
Jun 22 AS
Q 2Jun 22 AS
Q 2 -
Jun 22 AS
Q 4Jun 22 AS
Q 4 -
Dec 21 A2
P2 Q 6 aDec 21 A2
P2 Q 6 a -
Nov 21 A2
P2 Q 6Nov 21 A2
P2 Q 6 -
Nov 21 AS
Q 7Nov 21 AS
Q 7 -
Oct 20 AS
Q 5Oct 20 AS
Q 5 -
Mar 20 A2
P2 Q 3Mar 20 A2
P2 Q 3 -
Jun 19 A2
P2 Q 3Jun 19 A2
P2 Q 3 -
Jun 19 A2
P2 Q 3Jun 19 A2
P2 Q 3 -
Jun 19 AS
Q 6Jun 19 AS
Q 6 -
Jan 19 A2
P1 Q 2Jan 19 A2
P1 Q 2 -
Jun 18 A2
P1 Q 3Jun 18 A2
P1 Q 3 -
Jun 18 AS
Q 7Jun 18 AS
Q 7 -
May 18 A2
P2 Q 1May 18 A2
P2 Q 1 -
Jun 17 AS
Q 8Jun 17 AS
Q 8 -
May 17 A2
P1 Q 2May 17 A2
P1 Q 2
Edexcel 8MA0/01 Jun 2024 AS Exam Q. 4 :
5 marks in 6:00 min.
Edexcel 8MA0/01 May 2024 AS Mock Q. 8 :
6 marks in 7:12 min.
Edexcel 9MA0/02 Jan 2024 A2 Mock Q. 4 :
5 marks in 6:00 min.
Edexcel 8MA0/01 Jun 2023 AS Exam Q. 3 :
4 marks in 4:48 min.
Edexcel 9MA0/01 Jun 2023 A2 Exam Q. 8 :
10 marks in 12:00 min.
Edexcel 8MA0/01 Jun 2022 AS Mock Q. 2 :
4 marks in 4:48 min.
Edexcel 8MA0/01 Jun 2022 AS Exam Q. 4 :
6 marks in 7:12 min.
Edexcel 9MA0/02 Dec 2021 A2 Mock Q. 6 a :
2 marks in 2:24 min.
Edexcel 9MA0/02 Nov 2021 A2 Exam Q. 6 :
5 marks in 6:00 min.
Edexcel 8MA0/01 Nov 2021 AS Exam Q. 7 :
5 marks in 6:00 min.
Edexcel 8MA0/01 Oct 2020 AS Exam Q. 5 :
6 marks in 7:12 min.
Edexcel 9MA0/02 Mar 2020 A2 Mock Q. 3 :
9 marks in 10:48 min.
Edexcel 9MA0/02 Jun 2019 A2 Exam Q. 3 :
3 marks in 3:36 min.
Edexcel 9MA0/02 Jun 2019 A2 Shadow Exam Q. 3 :
3 marks in 3:36 min.
Edexcel 8MA0/01 Jun 2019 AS Exam Q. 6 :
6 marks in 7:12 min.
Edexcel 9MA0/01 Jan 2019 A2 Mock Q. 2 :
5 marks in 6:00 min.
Edexcel 9MA0/01 Jun 2018 A2 Exam Q. 3 :
4 marks in 4:48 min.
Edexcel 8MA0/01 Jun 2018 AS Exam Q. 7 :
6 marks in 7:12 min.
Edexcel 9MA0/02 May 2018 A2 Mock Q. 1 :
4 marks in 4:48 min.
Edexcel 8MA0/01 Jun 2017 AS Sample Exam Q. 8 :
5 marks in 6:00 min.
Edexcel 9MA0/01 May 2017 A2 Sample Exam Q. 2 :
5 marks in 6:00 min.
-
Jun 22 A2
P2 Q 4Jun 22 A2
P2 Q 4 -
Jun 22 AS
P2 Q 8Jun 22 AS
P2 Q 8 -
Nov 21 A2
P3 Q 1Nov 21 A2
P3 Q 1 -
Nov 21 A2
P3 Q 5Nov 21 A2
P3 Q 5 -
Nov 21 AS
P2 Q 5Nov 21 AS
P2 Q 5 -
Nov 20 A2
P1 Q 3Nov 20 A2
P1 Q 3 -
Jun 19 A2
P3 Q 1Jun 19 A2
P3 Q 1 -
Jun 19 A2
P1 Q 3Jun 19 A2
P1 Q 3 -
Jun 19 A2
P3 Q 5Jun 19 A2
P3 Q 5 -
Jun 19 AS
P2 Q 5Jun 19 AS
P2 Q 5 -
Jun 18 AS
P1 Q 3Jun 18 AS
P1 Q 3 -
Jun 17 A2
P3 Q 2Jun 17 A2
P3 Q 2 -
Jun 17 A2
P1 Q 5Jun 17 A2
P1 Q 5 -
Jun 17 AS
P1 Q 6Jun 17 AS
P1 Q 6
AQA 7357/2 Jun 2022 A2 Exam Q. 4 :
3 marks in 3:36 min.
AQA 7356/2 Jun 2022 AS Exam Q. 8 :
7 marks in 7:52 min.
AQA 7357/3 Nov 2021 A2 Exam Q. 1 :
1 mark in 1:12 min.
AQA 7357/3 Nov 2021 A2 Exam Q. 5 :
13 marks in 15:36 min.
AQA 7356/2 Nov 2021 AS Exam Q. 5 :
4 marks in 4:30 min.
AQA 7357/1 Nov 2020 A2 Exam Q. 3 :
1 mark in 1:12 min.
AQA 7357/3 Jun 2019 A2 Exam Q. 1 :
1 mark in 1:12 min.
AQA 7357/1 Jun 2019 A2 Exam Q. 3 :
1 mark in 1:12 min.
AQA 7357/3 Jun 2019 A2 Exam Q. 5 :
5 marks in 6:00 min.
AQA 7356/2 Jun 2019 AS Exam Q. 5 :
4 marks in 4:30 min.
AQA 7356/1 Jun 2018 AS Exam Q. 3 :
2 marks in 2:15 min.
AQA 7357/3 Jun 2017 A2 Sample Exam Q. 2 :
6 marks in 7:12 min.
AQA 7357/1 Jun 2017 A2 Sample Exam Q. 5 :
8 marks in 9:36 min.
AQA 7356/1 Jun 2017 AS Sample Exam Q. 6 :
4 marks in 4:30 min.
-
Jun 24 AS
P1 Q 1Jun 24 AS
P1 Q 1 -
Jun 24 AS
P1 Q 4Jun 24 AS
P1 Q 4 -
Jun 23 AS
P2 Q 10Jun 23 AS
P2 Q 10 -
Jun 22 AS
P1 Q 10 bJun 22 AS
P1 Q 10 b -
Nov 21 A2
P3 Q 11Nov 21 A2
P3 Q 11 -
Nov 21 A2
P2 Q 2Nov 21 A2
P2 Q 2 -
Nov 21 AS
P1 Q 5Nov 21 AS
P1 Q 5 -
Nov 21 A2
P1 Q 6Nov 21 A2
P1 Q 6 -
Nov 20 A2
P2 Q 1Nov 20 A2
P2 Q 1 -
Nov 20 A2
P2 Q 2Nov 20 A2
P2 Q 2 -
Nov 20 AS
P1 Q 2Nov 20 AS
P1 Q 2 -
Jun 19 A2
P1 Q 14 a Jun 19 A2
P1 Q 14 a -
Jun 19 AS
P2 Q 2Jun 19 AS
P2 Q 2 -
Jun 19 AS
P1 Q 4Jun 19 AS
P1 Q 4 -
Jun 19 A2
P2 Q 7Jun 19 A2
P2 Q 7 -
Jun 18 A2
P3 Q 1Jun 18 A2
P3 Q 1 -
Jun 17 A2
P1 Q 1Jun 17 A2
P1 Q 1 -
Jun 17 AS
P2 Q 5Jun 17 AS
P2 Q 5 -
Jun 17 A2
P3 Q 5Jun 17 A2
P3 Q 5
OCR MEI H630/01 Jun 2024 AS Exam Q. 1 :
2 marks in 2:33 min.
OCR MEI H630/01 Jun 2024 AS Exam Q. 4 :
4 marks in 5:06 min.
OCR MEI H630/02 Jun 2023 AS Exam Q. 10 :
5 marks in 6:25 min.
OCR MEI H630/01 Jun 2022 AS Exam Q. 10 b :
7 marks in 9:00 min.
OCR MEI H640/03 Nov 2021 A2 Exam Q. 11 :
5 marks in 8:00 min.
OCR MEI H640/02 Nov 2021 A2 Exam Q. 2 :
3 marks in 3:36 min.
OCR MEI H630/01 Nov 2021 AS Exam Q. 5 :
5 marks in 6:26 min.
OCR MEI H640/01 Nov 2021 A2 Exam Q. 6 :
7 marks in 8:24 min.
OCR MEI H640/02 Nov 2020 A2 Exam Q. 1 :
2 marks in 2:24 min.
OCR MEI H640/02 Nov 2020 A2 Exam Q. 2 :
3 marks in 3:36 min.
OCR MEI H630/01 Nov 2020 AS Exam Q. 2 :
4 marks in 5:09 min.
OCR MEI H640/01 Jun 2019 A2 Exam Q. 14 a :
4 marks in 4:48 min.
OCR MEI H630/02 Jun 2019 AS Exam Q. 2 :
2 marks in 2:34 min.
OCR MEI H630/01 Jun 2019 AS Exam Q. 4 :
5 marks in 6:26 min.
OCR MEI H640/02 Jun 2019 A2 Exam Q. 7 :
5 marks in 6:00 min.
OCR MEI H640/03 Jun 2018 A2 Exam Q. 1 :
3 marks in 4:48 min.
OCR MEI H640/01 Jun 2017 A2 Exam Q. 1 :
2 marks in 2:24 min.
OCR MEI H630/02 Jun 2017 AS Sample Exam Q. 5 :
6 marks in 7:43 min.
OCR MEI H640/03 Jun 2017 A2 Exam Q. 5 :
5 marks in 8:00 min.
- Trig Functions (AS) Trig Functions (AS)
- Radian Mode (A2) Radian Mode (A2)
- Radian Inverse Trig (A2) Radian Inverse Trig (A2)
Using trigonometrical functions

Using the radian mode for trigonometry

Evaluate inverse trigonometric functions in radians

- Cosine Rule (AS) Cosine Rule (AS)
- Sine Rule (AS) Sine Rule (AS)
- Triangle Area (AS) Triangle Area (AS)
- Trig Transformations (AS) Trig Transformations (AS)
- Using Trig Rules (AS) Using Trig Rules (AS)
- Arc Length (A2) Arc Length (A2)
- Sector Area (A2) Sector Area (A2)
- Segment Area (A2) Segment Area (A2)
- Recip Trig Transformations (A2) Recip Trig Transformations (A2)
Explore the Cosine Rule

Explore the Sine Rule

Sin formula for the area of a triangle

Transformations of sin, cos and tan
Using Trig Rules: Page 188, Example 10

Explore the relationship between radians and arc lengths

Explore the relationship between radians and sector areas

Explore the area of a segment

Explore transformations of sec, cosec and cot
- Reciprocals: cosec, sec, cot (A2) Reciprocals: cosec, sec, cot (A2)
- Intro to Inverses (A2) Intro to Inverses (A2)
- Inverses: arcsin, arccos, arctan (A2) Inverses: arcsin, arccos, arctan (A2)
- Inverses of (ax) (Ext) Inverses of (ax) (Ext)
- Sine/Cosine Graphs (AS) Sine/Cosine Graphs (AS)
Graphs of Reciprocal Trig: cosec, sec, cot
This display shows the graphs of the reciprocal trigonometric functions, cosec, sec and cot.
$\color{blue}{ cosec(a \, x) }$, $\color{blue}{ \sec(a \, x) }$ and $\color{blue}{ \cot(a \, x) }$ are plotted in blue for a coefficient $\color{blue}{ a }$ which you can change.
The reciprocal functions $\color{green}{ \sin(a \, x) }$, $\color{green}{ \cos(a \, x) }$ and $\color{green}{ \tan(a \, x) }$ are plotted in green alongside so you can see the reciprocal relationship.
You can also slide a red sample $\color{red}{ x }$ along the curves for a reading of corresponding values. Notice how the curves coincide at y = 1, because the reciprocal of 1 is 1.
$\color{blue}{ cosec(a \, x) }$, $\color{blue}{ \sec(a \, x) }$ and $\color{blue}{ \cot(a \, x) }$ are plotted in blue for a coefficient $\color{blue}{ a }$ which you can change.
The reciprocal functions $\color{green}{ \sin(a \, x) }$, $\color{green}{ \cos(a \, x) }$ and $\color{green}{ \tan(a \, x) }$ are plotted in green alongside so you can see the reciprocal relationship.
You can also slide a red sample $\color{red}{ x }$ along the curves for a reading of corresponding values. Notice how the curves coincide at y = 1, because the reciprocal of 1 is 1.
Introduction to Inverse Trigonometry
Suppose the value of sin(x), cos(x) or tan(x) is known.
Can we work backwards to find the value of x ?
This display shows that when we work backwards x can have many different values: an infinite number.
This display also shows that for sin(x) and cos(x) less than -1 or greater than +1, x has no possible values.
If sin(x) = t, x = arcsin(t).
If cos(x) = t, x = arccos(t).
If tan(x) = t, x = arccos(t).
In order that functions arcsin(t), arccos(t) and arctan(t) return a single 'principal' value, we have to restrict their ranges, by convention, as shown in a following display.
Finally, note that arcsin, arccos and arctan are commonly referred to as sin-1, cos-1 and tan-1, for instance on calculator keys. The '-1' indicates an inverse function, rather than a reciprocal index.
This display shows that when we work backwards x can have many different values: an infinite number.
This display also shows that for sin(x) and cos(x) less than -1 or greater than +1, x has no possible values.
If sin(x) = t, x = arcsin(t).
If cos(x) = t, x = arccos(t).
If tan(x) = t, x = arccos(t).
In order that functions arcsin(t), arccos(t) and arctan(t) return a single 'principal' value, we have to restrict their ranges, by convention, as shown in a following display.
Finally, note that arcsin, arccos and arctan are commonly referred to as sin-1, cos-1 and tan-1, for instance on calculator keys. The '-1' indicates an inverse function, rather than a reciprocal index.
Graphs of Inverse Trig: arcsin, arccos, arctan
This display allows you to investigate trigonometrical functions (in blue) and their inverses (in red).
Note that inverse trigonometrical functions, like all inverse functions, are reflections in the line 'y = x'.
Note also that because the trigonometrical functions are many-to-one, their inverses would be one-to-many, and therefore not true functions. In order to render the inverses as true functions, their ranges are restricted to a subset of "principal" values:
Note that inverse trigonometrical functions, like all inverse functions, are reflections in the line 'y = x'.
Note also that because the trigonometrical functions are many-to-one, their inverses would be one-to-many, and therefore not true functions. In order to render the inverses as true functions, their ranges are restricted to a subset of "principal" values:
$ - {\pi \over 2} \le \arcsin (x) \le {\pi \over 2}$ | $0 \le \arccos (x) \le \pi$ | $ - {\pi \over 2} < \arctan (x) < {\pi \over 2}$ |
Investigate Inverses: arcsin(ax), arccos(ax), arctan(ax)
Use the display below to get familiar with the shapes of the graphs of the inverse functions $\color{red}{\arcsin (ax)}$, $\color{red}{\arccos (ax)}$ and $\color{red}{\arctan (ax)}$.
Note that these functions are also refered to as $\color{red}{\sin^{ - 1} (ax)}$, $\color{red}{\cos^{ - 1} (ax)}$ and $\color{red}{\tan^{ - 1} (ax)}$.
Inverse functions, are reflections in the line $\color{green}{y = x}$.
Is $\color{red}{\arcsin (ax)}$ always the inverse of $\color{blue}{\sin (ax)}$ ?
Note that these functions are also refered to as $\color{red}{\sin^{ - 1} (ax)}$, $\color{red}{\cos^{ - 1} (ax)}$ and $\color{red}{\tan^{ - 1} (ax)}$.
Inverse functions, are reflections in the line $\color{green}{y = x}$.
Is $\color{red}{\arcsin (ax)}$ always the inverse of $\color{blue}{\sin (ax)}$ ?
Sine/Cosine Graphs
This display allows you to view the shape and key features of Sine and Cosine curves.
You can drag a blue glider to read coordinates at a sample point.
This wave pattern occurs often in nature, including wind waves, sound waves, and light waves.
A cosine wave is said to be "sinusoidal", because $ \cos ( x ) = sin ( x + { \pi \over 2 } ) $, which is also a sine wave with a phase-shift of $ { \pi \over 2 } $ radians. Because of this "head start", it is often said that the cosine function leads the sine function or the sine lags the cosine.
The human ear can recognize single sine waves as sounding clear because sine waves are representations of a single frequency with no harmonics.
You can drag a blue glider to read coordinates at a sample point.
This wave pattern occurs often in nature, including wind waves, sound waves, and light waves.
A cosine wave is said to be "sinusoidal", because $ \cos ( x ) = sin ( x + { \pi \over 2 } ) $, which is also a sine wave with a phase-shift of $ { \pi \over 2 } $ radians. Because of this "head start", it is often said that the cosine function leads the sine function or the sine lags the cosine.
The human ear can recognize single sine waves as sounding clear because sine waves are representations of a single frequency with no harmonics.