Selected: Edexcel A Level Maths - Pure Maths
AS & A2 (Whole Course) - Casio fx-991EX
Register / Login for More / Subscribe for All Without Ads
AS & A2 (Whole Course) - Casio fx-991EX
Register / Login for More / Subscribe for All Without Ads
- Theory Theory Revision
- AQA Qs AQA Qs
- Edexcel Qs Edexcel Qs
- OCR Qs OCR Qs
- OCR MEI Qs OCR MEI Qs
- GeoGebra GeoGebra
- JsxGraph JsxGraph
-
Jun 23 A2
PU Q 2 Jun 23 A2
PU Q 2 -
Jun 23 A2
PU Q 5 Jun 23 A2
PU Q 5 -
Jun 22 A2
PU Q 14 a Jun 22 A2
PU Q 14 a -
Nov 20 A2
PU Q 11 Nov 20 A2
PU Q 11 -
Jun 19 A2
PU Q 14 a Jun 19 A2
PU Q 14 a -
Jun 17 A2
PU Q 7 Jun 17 A2
PU Q 7
AQA 7357/3 Jun 2023 A2 Exam Q. 2 : 1 mark in 1:12 min.
AQA 7357/1 Jun 2023 A2 Exam Q. 5 : 4 marks in 4:48 min.
AQA 7357/1 Jun 2022 A2 Exam Q. 14 a : 3 marks in 3:36 min.
AQA 7357/1 Nov 2020 A2 Exam Q. 11 : 9 marks in 10:48 min.
AQA 7357/1 Jun 2019 A2 Exam Q. 14 a : 4 marks in 4:48 min.
AQA 7357/3 Jun 2017 A2 Sample Exam Q. 7 : 12 marks in 14:24 min.
-
Jan 24 A2
PU Q 7 Jan 24 A2
PU Q 7 -
Jun 23 A2
PU Q 5 Jun 23 A2
PU Q 5 -
Jan 23 A2
PU Q 3 Jan 23 A2
PU Q 3 -
Jun 22 A2
PU Q 5 Jun 22 A2
PU Q 5 -
Dec 21 A2
PU Q 3 Dec 21 A2
PU Q 3 -
Nov 21 A2
PU Q 11 a Nov 21 A2
PU Q 11 a -
Oct 20 A2
PU Q 1 Oct 20 A2
PU Q 1 -
Mar 20 A2
PU Q 9 Mar 20 A2
PU Q 9 -
Jun 19 A2
PU Q 2 Jun 19 A2
PU Q 2 -
Jun 19 A2
PU Q 2 Jun 19 A2
PU Q 2 -
Jan 19 A2
PU Q 1 Jan 19 A2
PU Q 1 -
May 18 A2
PU Q 1 May 18 A2
PU Q 1 -
May 17 A2
PU Q 14 ab May 17 A2
PU Q 14 ab
Edexcel 9MA0/01 Jan 2024 A2 Mock Q. 7 : 8 marks in 9:36 min.
Edexcel 9MA0/01 Jun 2023 A2 Exam Q. 5 : 6 marks in 7:12 min.
Edexcel 9MA0/02 Jan 2023 A2 Mock Q. 3 : 7 marks in 8:24 min.
Edexcel 9MA0/02 Jun 2022 A2 Exam Q. 5 : 6 marks in 7:12 min.
Edexcel 9MA0/01 Dec 2021 A2 Mock Q. 3 : 6 marks in 7:12 min.
Edexcel 9MA0/01 Nov 2021 A2 Exam Q. 11 a : 3 marks in 3:36 min.
Edexcel 9MA0/02 Oct 2020 A2 Exam Q. 1 : 5 marks in 6:00 min.
Edexcel 9MA0/01 Mar 2020 A2 Mock Q. 9 : 8 marks in 9:36 min.
Edexcel 9MA0/02 Jun 2019 A2 Exam Q. 2 : 4 marks in 4:48 min.
Edexcel 9MA0/02 Jun 2019 A2 Shadow Exam Q. 2 : 4 marks in 4:48 min.
Edexcel 9MA0/01 Jan 2019 A2 Mock Q. 1 : 5 marks in 6:00 min.
Edexcel 9MA0/01 May 2018 A2 Mock Q. 1 : 6 marks in 7:12 min.
Edexcel 9MA0/01 May 2017 A2 Sample Exam Q. 14 ab : 4 marks in 4:48 min.
-
Jun 24 A2
PU Q 1 Jun 24 A2
PU Q 1 -
Jun 22 A2
PU Q 1 Jun 22 A2
PU Q 1 -
Nov 21 A2
PU Q 6 Nov 21 A2
PU Q 6 -
Nov 20 A2
PU Q 10 a Nov 20 A2
PU Q 10 a -
Jun 19 A2
PU Q 4 c Jun 19 A2
PU Q 4 c -
Jun 18 A2
PU Q 2 Jun 18 A2
PU Q 2 -
Jun 17 A2
PU Q 2 Jun 17 A2
PU Q 2
OCR H240/01 Jun 2024 A2 Exam Q. 1 : 7 marks in 8:24 min.
OCR H240/01 Jun 2022 A2 Exam Q. 1 : 6 marks in 7:12 min.
OCR H240/02 Nov 2021 A2 Exam Q. 6 : 5 marks in 6:00 min.
OCR H240/01 Nov 2020 A2 Exam Q. 10 a : 4 marks in 4:48 min.
OCR H240/03 Jun 2019 A2 Exam Q. 4 c : 4 marks in 4:48 min.
OCR H240/01 Jun 2018 A2 Exam Q. 2 : 4 marks in 4:48 min.
OCR H240/03 Jun 2017 A2 Sample Exam Q. 2 : 4 marks in 4:48 min.
-
Jun 22 A2
PU Q 14 Jun 22 A2
PU Q 14 -
Nov 20 A2
PU Q 8 Nov 20 A2
PU Q 8 -
Jun 19 A2
PU Q 4 Jun 19 A2
PU Q 4 -
Jun 18 A2
PU Q 13 iv v Jun 18 A2
PU Q 13 iv v -
Jun 17 A2
PU Q 6 Jun 17 A2
PU Q 6
OCR MEI H640/02 Jun 2022 A2 Exam Q. 14 : 8 marks in 9:36 min.
OCR MEI H640/01 Nov 2020 A2 Exam Q. 8 : 7 marks in 8:24 min.
OCR MEI H640/02 Jun 2019 A2 Exam Q. 4 : 4 marks in 4:48 min.
OCR MEI H640/01 Jun 2018 A2 Exam Q. 13 iv v : 4 marks in 4:48 min.
OCR MEI H640/01 Jun 2017 A2 Exam Q. 6 : 4 marks in 4:48 min.
Under-estimation and over-estimation with the trapezium rule
Trapezium Rule Approximation for Difficult Integrals 1
The method of finding the area under a curve by splitting it up into strips is often referred to as a "Riemann
sum". The value of a definite integral can be estimated using various numerical
methods. This is particularly useful when the integral is difficult or
impossible to integrate. The method consists of dividing the area into strips.
The trapezium rule (or trapezoidal rule in the USA) is one such method. The
area of each strip is estimated by taking it to be approximately a
trapezium.
The trapezium method uses this formula:
With the display, you should see how the accuracy of the estimate increases as the number of intervals increases.
With the display, you should also see how the trapezium rule overestimates where the curve is concave upwards, and underestimates where the curve is convex upwards.
The trapezium method uses this formula:
With the display, you should see how the accuracy of the estimate increases as the number of intervals increases.
With the display, you should also see how the trapezium rule overestimates where the curve is concave upwards, and underestimates where the curve is convex upwards.
Trapezium Rule Approximation for Difficult Integrals 2
Functions such as $\color{blue}{y = {e^{ - {x^2}}}}$ and $\color{blue}{y = \sin \left( {x^2} \right)}$
cannot be integrated by basic methods.
However, their definite integrals can be estimated using numerical methods such as the trapezium rule (or trapezoidal rule in the USA) which is presented here.
The method consists of dividing the area into strips. The area of each strip is estimated by taking it to be approximately a trapezium.
With the display, you should see how the accuracy of the estimate increases as the number of intervals increases.
With the display, you should also see how the trapezium rule overestimates where the curve is concave upwards, and underestimates where the curve is convex upwards.
However, their definite integrals can be estimated using numerical methods such as the trapezium rule (or trapezoidal rule in the USA) which is presented here.
The method consists of dividing the area into strips. The area of each strip is estimated by taking it to be approximately a trapezium.
With the display, you should see how the accuracy of the estimate increases as the number of intervals increases.
With the display, you should also see how the trapezium rule overestimates where the curve is concave upwards, and underestimates where the curve is convex upwards.